Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just-For-Fun Experiment Creates Self-Assembly Method

14.12.2001


An experiment that University of Chicago physicists conducted just for fun has unexpectedly led them to a new technique for producing nanoscale structures.
The Chicago physicists have built simple electronic devices using the new technique, which precisely controls the growth of metal wires along tiny scaffolds that automatically assemble themselves following nature’s own tendencies.

"This is perhaps the first time that it has been possible to assemble large numbers of parallel, continuous wires that are truly nanometer scale in cross-section," said Heinrich Jaeger, Professor in Physics at the University of Chicago. Jaeger and Ward Lopes of Arryx Inc. in Chicago describe the technique in today’s issue of the journal Nature.


Self-assembly is a hot research field today because of the promise it holds for producing new technology at the nanoscale, the scale of atoms and molecules. Conventional methods for building smaller, faster computer components involves chiseling ever-finer structures out of a larger piece of material. Self-assembly, in contrast, builds up larger structures from smaller building blocks.

The nanowires that Lopes fabricated during the course of his Ph.D. research at the University measure 30 nanometers by 10 nanometers in diameter. A nanometer is a billionth of a meter, or the width of a double strand of DNA. Lopes also fabricated "nanochains," tiny strings of metal beads of similar size that could serve as switches.

The most perfect wirelike structures are formed with silver, Jaeger said. "Silver is unique in that it forms the wires. Essentially all other metals -- gold, copper, tin, lead, bismuth -- form nanochains under normal conditions.

"We can also form nanochains with silver, but the exciting advance of Ward’s research is that he was able to combine experimental results with computer simulations to get a feeling of what it is about a particular metal that makes it behave in a wirelike fashion or the chainlike fashion."

This productive line of research started on a lark.

"In Heinrich’s lab we had a tradition on Friday afternoons of doing experiments that you couldn’t justify spending time on, that you would only do because you wanted to have fun and try things out," Lopes said.

In his experiment, Lopes attempted to see if silver would chemically react to certain copolymers -- synthetic compounds -- the way gold did, as would be expected. But Lopes noticed that the silver exhibited strange behavior. All other metals formed balls on the copolymers and, if he added too much metal the balls would bond to each other and ignore the template. When he added enough silver he expected the silver to ignore the copolymer template, but the silver spheres had become long and thin.

"I just followed my nose and said, how long can I get these things to be?"

Potential applications for the technique include the production of high-density computer disks, and to make lenses for X-ray lithography, a process for transferring ultrasmall patterns to silicon computer chips.

The Chicago physicists used commonly available copolymers and simple methods with an eye toward easing the transfer of their results to potential applications.

"The plastics in the copolymer we used are standard, everyday plastics," Lopes said. "One was polystyrene, which is used to make Styrofoam, and the other, polymethylmethacrylate, is familiar from Plexiglas."

Steve Koppes | International Science News
Further information:
http://unisci.com/stories/20014/1213015.htm

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>