Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just-For-Fun Experiment Creates Self-Assembly Method

14.12.2001


An experiment that University of Chicago physicists conducted just for fun has unexpectedly led them to a new technique for producing nanoscale structures.
The Chicago physicists have built simple electronic devices using the new technique, which precisely controls the growth of metal wires along tiny scaffolds that automatically assemble themselves following nature’s own tendencies.

"This is perhaps the first time that it has been possible to assemble large numbers of parallel, continuous wires that are truly nanometer scale in cross-section," said Heinrich Jaeger, Professor in Physics at the University of Chicago. Jaeger and Ward Lopes of Arryx Inc. in Chicago describe the technique in today’s issue of the journal Nature.


Self-assembly is a hot research field today because of the promise it holds for producing new technology at the nanoscale, the scale of atoms and molecules. Conventional methods for building smaller, faster computer components involves chiseling ever-finer structures out of a larger piece of material. Self-assembly, in contrast, builds up larger structures from smaller building blocks.

The nanowires that Lopes fabricated during the course of his Ph.D. research at the University measure 30 nanometers by 10 nanometers in diameter. A nanometer is a billionth of a meter, or the width of a double strand of DNA. Lopes also fabricated "nanochains," tiny strings of metal beads of similar size that could serve as switches.

The most perfect wirelike structures are formed with silver, Jaeger said. "Silver is unique in that it forms the wires. Essentially all other metals -- gold, copper, tin, lead, bismuth -- form nanochains under normal conditions.

"We can also form nanochains with silver, but the exciting advance of Ward’s research is that he was able to combine experimental results with computer simulations to get a feeling of what it is about a particular metal that makes it behave in a wirelike fashion or the chainlike fashion."

This productive line of research started on a lark.

"In Heinrich’s lab we had a tradition on Friday afternoons of doing experiments that you couldn’t justify spending time on, that you would only do because you wanted to have fun and try things out," Lopes said.

In his experiment, Lopes attempted to see if silver would chemically react to certain copolymers -- synthetic compounds -- the way gold did, as would be expected. But Lopes noticed that the silver exhibited strange behavior. All other metals formed balls on the copolymers and, if he added too much metal the balls would bond to each other and ignore the template. When he added enough silver he expected the silver to ignore the copolymer template, but the silver spheres had become long and thin.

"I just followed my nose and said, how long can I get these things to be?"

Potential applications for the technique include the production of high-density computer disks, and to make lenses for X-ray lithography, a process for transferring ultrasmall patterns to silicon computer chips.

The Chicago physicists used commonly available copolymers and simple methods with an eye toward easing the transfer of their results to potential applications.

"The plastics in the copolymer we used are standard, everyday plastics," Lopes said. "One was polystyrene, which is used to make Styrofoam, and the other, polymethylmethacrylate, is familiar from Plexiglas."

Steve Koppes | International Science News
Further information:
http://unisci.com/stories/20014/1213015.htm

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>