Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new metamaterial could transform ultrasound imaging

02.06.2006


UC Berkeley researchers borrow principles of resonance to develop a new material that captures a sound wave’s fine details



Using the same principles that help create a guitar’s complex tones, researchers at the University of California, Berkeley, have developed a new material that holds promise for revolutionizing the field of ultrasound imaging.

The substance, dubbed an "ultrasonic metamaterial," responds differently to sound waves than any substance found in nature. Within a decade, the researchers report, the technology they developed to create the material could be used to vastly enhance image resolution of ultrasound, while at the same time allowing for the miniaturization of acoustic devices at any given frequency.


"We’ve been very interested in developing artificial materials with extraordinary properties that do not exist in nature," said Xiang Zhang, Chancellor’s Professor in Mechanical Engineering at UC Berkeley and principal investigator of the study that describes the new material.

Zhang’s interest in acoustic metamaterials was inspired by the five years he and his group have already spent exploring optical metamaterials. "The goal is to create artificial materials that will be useful in both optical and acoustical applications," Zhang said.

The study, "Ultrasonic metamaterials with negative modulus," will be published June 1 in Nature Materials. The journal released the study in its early online version on April 30.

Metamaterials are novel, manmade structures designed to have properties that respond to light, sound and other waves in ways that do not occur in naturally occurring substances. An example would be a material created to have a negative refractive index, which means that it could bend light in a different direction than normal materials do, explained Cheng Sun, a senior scientist in Zhang’s group and one of the paper’s authors.

A basic element of metamaterial design is a lattice of identical building blocks, each smaller than the wavelength of the light wave or sound wave with which the material is designed to interact. As a result, when waves move through the material, they do not "see" individual blocks, but respond to the material as a whole, as if it were a homogeneous substance.

The material designed by Zhang and his colleagues consists of a series of water-filled chambers connected by a long channel built into a bar of aluminum. Known as Helmholtz resonators, the rigid-walled, narrow-mouthed chambers are designed to vibrate - or resonate - in response to the sound of a certain pitch. A better-known example of a Helmholtz resonator is the body of a guitar, which resonates when the instrument’s strings are plucked.

Designed to respond to 30 kHz sound waves moving through water, each chamber in the aluminum is a little smaller than a pencil’s eraser. Their spacing at 9.2 mm is one-fifth the length of one 30 kHz sound wave.

As sound waves pass through the water-filled channel, a significant amount of their energy gets stored in the connected chambers, explained Nicholas Fang, who designed the metamaterial when he was a post-doctoral researcher in Zhang’s lab. Now an assistant professor of mechanical engineering at the University of Illinois at Urbana-Champaign, Fang is lead author of the study.

"There is a natural frequency that determines the tone of a resonator," Fang said. "In this material, we are trying to excite the resonators with a tone that is higher than the one that they are tuned to. And because there are so many resonators in the series all tuned to the same frequency, every one lags just a bit behind the other."

In the complex dynamics of acoustical physics, this triggers various phenomena:

  • As opposed to natural materials that compress when a force (such as a sound wave) is applied to them, the metamaterial expands. This response, called "negative modulus," occurs when the fluid in the neck of the resonators oscillates in and out, causing the fluid in the chambers to spread apart and push into its walls.
  • The response makes it appear as if the sound wave is propagating backward instead of moving forward.
  • The material supports sound waves that are shorter and finer than sound waves that propagate through any other material.

The result?

"Basically, the resonators work together, supporting a much higher modulation of the acoustic wave," Fang said. "They are reacting as a very precise ruler, allowing us to measure the finer features of the wave."

This ability provides the basis for the material’s usefulness in ultrasound imaging. One of the factors limiting resolution quality of sonograms is the ability of the ultrasound lens to capture sound waves. Currently, these lenses are made with elastic materials such as polymers. The elasticity of the materials is what allows them to capture and focus the waves. But there is a limit to the finest resolution that they can capture.

"With this new material with a negative modulus, all the limits can be overcome," Fang said.

The material that Zhang’s research group fabricated is 55 centimeters long and houses 60 resonators. In its present form, it can be used only for one frequency and can capture sound from only one direction. The group’s plan, said Zhang, is to develop "three-dimensional" materials that will not only be able to capture sound from every direction, but will also be tunable. That is, the size of the resonators will be adjustable so that the material can respond to any frequency. Once they have designed and tested such a material, Zhang expects to be able to use microfabrication techniques to build materials with hundreds of thousands of resonators.

Because its resonators are many times smaller than wavelengths of the sound wave, Zhang said, the material can be used to make compact sonar and ultrasonic devices. Conventional lenses in these devices must be at least as large as the waves they are meant to capture. Sonar devices, which use long-length waves, would particularly benefit from this miniaturization.

The other researchers who contributed to the study are Dongjuan Xi, a former graduate student of Zhang’s; Jianyi Xu, a visiting scholar from Nanjing University, who was a member of Zhang’s lab when the work was conducted; and Muralidhar Ambati and Werayut Srituravanich, Ph.D. students of Zhang’s.

Liese Greensfelder | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>