Producing high performace porous materials by Pulsed Electric Current Sintering

Homogeneity in sintering of fine Ni-20Cr powder by PECS process

Pulsed Electric Current Sintering (PECS), also known as spark plasma sintering (SPS) or plasma activation sintering (PAS) is technique used for densifying power compacts or materials such as metals and ceramics and combination thereof. The attractive features of the process are that it allows compaction and sintering in a single stage and the process itself is quite rapid.

PECS also shows promise in being able to produce high performance porous materials. The difficulty in producing such porous materials is the ability to produce a homogenous microstructure.

In this paper, Japanese researchers, Manabu Sato, Makoto Nanko, Koji Matsumaru and Kozo Ishizaki, from the Nagaoka University of Technology examine density homogeneity in partially–sintered metallic bodies produced using PECS. In order to obtain homogeneous microstructure the effects of geometry of the graphite die is also investigated. Fine Ni-20Cr powder with particle size of 5 µm and coarse powder with 70 µm in particle size were used in order to discuss effects of powder size.

The researchers successfully produced porous bodies using the PECS technology. They found that sintering rates were faster for finer starting powders when compared to coarser powders, with differing dies sizes and geometries making no significant difference. Coarser powders, despite their slower rates of densification produced homogenous microstructures. Finer powders in contrast, were found to be significantly denser on the inside compared to the outside. This was attributed to temperature gradients from Joule heating and heat transfer during the sintering process. The use of die with thicker walls was found to resolve this issue and at the same time improved reproducibility.

Media Contact

Dr. Ian Birkby EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors