Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organizing dumbbells for nanotech devices

15.05.2006


Bridging the gap between nanoscience and nanotechnology



A team of chemists from France, Italy, Spain, the UK, and the US are working together to bridge the gap between nanoscience and nanotechnology. They have now devised a method that could allow them to organize tiny molecular machines on a surface and so build devices that pack in thousands of times as many switching units, for instance, than is possible with a conventional silicon chip.

Chemist Fraser Stoddart, now at the University of California Los Angeles, and his co-workers have designed and made numerous molecules based on hanging ring-shaped molecules on other chain-like molecules and loops. By incorporating functional chemical groups along the length of the chain or around these loops, they have shown that it is possible to make the molecular beads switch between these various functional groups using heat, light, or electricity. The ultimate aim of creating such molecular-scale devices is to use them as switching units or logic gates in a future computer based on molecules instead of silicon chips.


Before that will be possible, however, the nanoscientists must find a way to organize arrays of these molecules on a surface so that input and output connections can be made between the molecules and the outside world.

Stoddart and colleague Alberto Credi of the University of Bologna, Italy, and co-workers at the University of Birmingham, UK, the University Paul Sabatier, Toulouse, France, and the University of Valencia in Spain recognize that in order to exploit their molecular machines they will need to find a way to organize them at interfaces, deposit them on functional surfaces, or immobilize them into membranes or porous materials. This will allow the molecular machines to work together and to be "addressed" on the nanometer scale. The researchers believe that modifying the surface of an electrode to incorporate an organized layer of molecular machines could be the key to success.

The team reports in the current issue of Advanced Materials how they have recently succeeded in applying an incredibly thin layer, just a few molecules thick, of a particular molecular machine to a glass surface. The molecular machine in question is a switchable rotaxane--a ring-shaped molecule held on a short chain by two blocking groups, making it resemble a dumbbell with a collar around the handle.

A special technique was used to make thin layers of this dumbbell-shaped component in solution on a glass slide coated with ITO (indium tin oxide). By using two solutions--one containing the dumbbells and the other a soapy surfactant compound--the researchers were able to force the molecules to organize themselves because of electrostatic repulsion and attraction between the surfactant, the molecules, and the surface, until ultimately they became attached with the same orientation to the ITO layer on the glass slide.

The researchers then tested their thin layers of dumbbell molecules to see whether they would work as planned. They found that the thin film exhibited a reversible switching behavior when exposed cyclically to an acid and then a base. This, they explain, demonstrates that the thin film is capable of transducing a chemical input signal--the acid-base--into an electrical output signal. This bodes well for interfacing other molecular machines in a similar way.

There is, however, a puzzle that remains unsolved in this particular experiment. The team’s other molecular machines have an obvious switching capacity between two functional units on the chain or loop, as mentioned previously. However, there are no functional units on the dumbbell, so there is actually nothing to switch. The researchers are still puzzling over how the switching they observe takes place in the dumbbell molecules.

Ultimately, control using a light source or electricity will be required before such layers will be useful in the development of molecular computers, but this first small step to organizing molecular machines could lead to the required breakthrough.

Ute Schnebel | EurekAlert!
Further information:
http://www.wiley-vch.de

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>