Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The relationship between high thermal conductivity and grain orientation in ceramics


Grain orientation and thermal conductivity in tape cast β-Si3N4

â-Si3N4 ceramics with highly oriented grains, show high thermal conductivity along the tape-casting direction. In order to clearly understand the relationship between microstructure and thermal conductivity in ceramics, it is important to understand degrees of orientation for each grain and the grain boundary.

In this study Japanese researchers, Hiromi Nakano, Hiroshi Nakano and Koji Watari, from Ryukoku University and the National Institute of Advanced Industrial Science and Technology Ceramic Research Institute tried to determine the orientation of each grain in â-Si3N4 ceramic with controlled grain orientation by two methods - electron back-scattered diffraction (EBSD) and standard electron diffraction. This work focuses on highly oriented â-Si3N4 ceramics obtained by tape-casting with seed particles, followed by hot-pressing and HIPing.

A whole sintered body was analyzed by electron back-scattered diffraction (EBSD) with a scanning electron microscope. Detailed analysis was carried out by an electron diffraction method with a conventional transmission electron microscope (TEM). The degrees of tilting angle of each grain from the basis zone axis was calculated from the selected area diffraction (SAD) patterns, and these were expressed by tone of color and color variation, respectively. Furthermore, the microchemistry of the grain boundary was analyzed by energy dispersive spectroscopy (EDS).

Results indicated that each grain was oriented within 20 degrees tilting angle from the [0001] axis in the TEM observed specimen. Furthermore, the relationship between the microstructural data and thermal data are compared and discussed for various types of â-Si3N4 ceramics. In this case, the appearance of high anisotropic thermal conductivity was caused by crystallographic nature, grain features, and grain purity during a liquid-sintering process. These findings may lead to uses of silicon nitride in high thermal conductivity applications.

Dr. Ian Birkby | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>