Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube sandwiches could lead to better composite materials

10.05.2006


By stacking layers of ceramic cloth with interlocking nanotubes in between, a team of researchers has created new composites with significantly improved properties compared to traditional materials. The "nanotube sandwiches," which are described in the May 7 online edition of the journal Nature Materials, could find use in a wide array of structural applications.



"Nanotubes are a very versatile material with absolutely fascinating physical properties, all the way from ballistic conduction to really interesting mechanical behavior," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a lead author of the paper, along with colleagues at the University of Hawaii at Manoa. Some fundamental issues, however, have kept researchers from realizing the full potential of nanotubes, particularly when combining them with other materials to make composites. The interface between the materials is not as strong as one might expect, Ajayan notes, because it is difficult to disperse nanotubes and to align them in an orderly way.

Ajayan and his colleagues have pioneered a process to help overcome these difficulties, and they are putting it to use in a wide variety of applications. For the current project, the researchers are applying the process to a new area: reinforced composite fabrics made from woven ceramic fibers. These materials have been used for decades in structural applications, but they tend to perform poorly in terms of "through-thickness," or the ability of a material to respond to forces applied perpendicular to the fabric-stacking direction, according to Ajayan.


"We have demonstrated that these through-thickness properties can be improved by adding nanotube Velcro-like structures between the layers," says Mehrdad Ghasemi-Nejhad, professor of mechanical engineering at Hawaii and a lead author of the paper. To make the new materials, the researchers deposit a forest of carbon nanotubes across the surface of a cloth woven from fibers of silicon carbide -- a ceramic compound made from silicon and carbon. The fabric layers are infiltrated with a high-temperature epoxy matrix, and then several layers of cloth are stacked on top of each other to form a three-dimensional composite "sandwich," with interlocking nanotubes acting to fasten the layers together.

"This is a very nice example of how to use nanotubes to solve major existing problems, rather than going all-out to make composites based on nanotubes alone, which has proven to be a very challenging task," Ajayan says. The team has successfully made cloths up to roughly five inches by two inches, and the process is easily scalable to make larger materials, they say.

The researchers ran several experiments to test the new material’s properties, and they found that the interlocking nanotubes provided remarkable improvements in strength and toughness under various loading conditions. The materials performed extremely well in fracture tests, and they demonstrated a five-fold increase in damping -- or the ability to dissipate energy -- over the original ceramic composites without nanotubes included. This suggests that the new composites could be used in many applications where mechanical properties are important, from automobile engines to golf club shafts.

Tests also showed that both the thermal and electrical conductivity of the new composites were significantly improved, which means that they could potentially be employed as sensors to monitor crack propagation in various structures, the researchers note.

The University of Hawaii at Manoa team included Vinod Veedu, a graduate student at the Hawaii Nanotechnology Laboratory; Anyuan Cao, assistant professor of mechanical engineering; and Kougen Ma, associate director of the Intelligent and Composite Materials Laboratory. Several other Rensselaer researchers also participated in the project: Caterina Soldano, a doctoral student in physics, applied physics, and astronomy; Xuesong Li, a doctoral student in materials science and engineering; and Swastik Kar, a postdoctoral researcher in materials science and engineering.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>