Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanotubes act as ’thermal Velcro’ to reduce computer-chip heating


Engineers have created carpets made of tiny cylinders called carbon nanotubes to enhance the flow of heat at a critical point where computer chips connect to cooling devices called heat sinks, promising to help keep future chips from overheating.

Researchers are trying to develop new types of "thermal interface materials" that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

Purdue University researchers have made several new thermal interface materials with carbon nanotubes, including a Velcro-like nanocarpet.

"The bottom line is the performance that we see with nanotubes is significantly better than comparable state-of-the-art commercial materials," said Timothy Fisher, an associate professor of mechanical engineering who is leading the research. "Carbon nanotubes have excellent heat-conduction properties, and our ability to fabricate them in a controlled manner has been instrumental in realizing this application."

Recent findings have shown that the nanotube-based interfaces can conduct several times more heat than conventional thermal interface materials at the same temperatures. The nanocarpet, called a "carbon nanotube array thermal interface," can be attached to both the chip and heat sink surfaces.

"We say it’s like Velcro because it creates an interwoven mesh of fibers when both sides of the interface are coated with nanotubes," Fisher said. "We don’t mean that it creates a strong mechanical bond, but the two pieces come together in such a way that they facilitate heat flow, becoming the thermal equivalent of Velcro. In some cases, using a combination of nanotube material and traditional interface materials also shows a strong synergistic effect."

Findings related to the combination of carbon nanotubes and traditional interface materials are detailed in a paper appearing in the May issue of the International Journal of Heat and Mass Transfer. The paper was written by mechanical engineering doctoral student Jun Xu and Fisher.

Heat is generated at various points within the intricate circuitry of computer chips and at locations where chips connect to other parts. As heat flows through conventional thermal interface materials, the temperature rises about 15 degrees Celsius, whereas the nanotube array material causes a rise of about 5 degrees or less.

It will be necessary to find more efficient thermal interface materials in the future because as computer chips become increasingly more compact, more circuitry will be patterned onto a smaller area, producing additional heat. Excess heat reduces the performance of computer chips and can ultimately destroy the delicate circuits.

The nanotubes range in diameter from less than one nanometer to about 100 nanometers. A nanometer is a billionth of a meter, or about the distance of 10 atoms strung together.

The nanotube carpets also might have military and other commercial applications for cooling "power electronics," which are systems that control and convert the flow of electrical power so that it can be used for various purposes on an aircraft, ship or vehicle.

The research has been funded by Purdue’s Cooling Technologies Research Center, supported by the National Science Foundation, industry and Purdue to help corporations develop miniature cooling technologies for a wide range of applications, from electronics and computers to telecommunications and advanced aircraft. Applications in power electronics are being supported by the Air Force Research Laboratory in association with the Birck Nanotechnology Center at Purdue’s Discovery Park.

The technology is ready for commercialization and is being pursued by several corporate members of the cooling research center, including Nanoconduction Inc., a startup company in Sunnyvale, Calif., which is a new member of the cooling center.

Writer: Emil Venere, (765) 494-4709,
Source Timothy Fisher, (765) 494-5627,
Purdue News Service: (765) 494-2096;

Emil Venere | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>