Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First neutrons produced by DOE’s Spallation Neutron Source

03.05.2006


One of the largest and most anticipated U.S. science construction projects of the past several decades has passed its most significant performance test. The Department of Energy’s Spallation Neutron Source, located at Oak Ridge National Laboratory, has generated its first neutrons.



Research conducted at the SNS will lay the groundwork for the next generation of materials research. Scientists believe that the greatly improved ability to understand the structure of materials could lead to a virtually limitless number of innovations, including stronger and lighter airplanes, a new generation of batteries and fuel cells, and time-released drugs that target a specific body organ.

Just after 2 p.m. Friday, a pulse of protons from the SNS’s accelerator complex, traveling at nearly the speed of light, struck its mercury target. The protons "spalled" neutrons from the nuclei of mercury circulating inside the target. These first neutrons were recorded on equipment specially installed for the commissioning.


"To have observed ’first neutrons’ on the initial SNS run is a tribute to the men and women who have worked so hard to design, construct, and now operate this magnificent facility," said Dr. Raymond L. Orbach, Director of the DOE Office of Science. "To bring a project of this scale and cost to completion on budget and ahead of schedule represents a model for all future large scale scientific projects to emulate. All of us owe all who have contributed to this achievement sincere thanks and appreciation for the opportunities you have now created for our world. It is a great moment for science."

With the linac operating initially at a much lower power than its eventual 1.4 megawatts, the target nevertheless was struck by trillions of protons, generating the first of what will become the world’s most intense beams of neutrons for materials research.

"These first neutrons are representative of the technological breakthroughs required to establish the SNS as the world’s leading facility for neutron research," said SNS Director Thom Mason. "We took on the challenges and technical risks involved in designing and delivering the linac, ring and target because we knew how much the scientific user community would benefit from the results."

The SNS’s mercury target is the first of its kind. Researchers chose mercury for the target medium because, as a relatively heavy element, it is rich in neutrons. Mercury also has the capacity to absorb the powerful pulses from the linear accelerator (linac) and accumulator ring. Conventional target materials such as tungsten require cooling with water, which limits power and intensity.

The $1.4 billion SNS will have about eight times the beam power of the world’s currently leading pulsed spallation source. This increase in power, when combined with the advanced instrument technology developed at SNS, will give researchers a net improvement in measured neutron beam intensity of factors of 50 to 100.

The SNS has been commissioned in stages, beginning with the 1,000-foot linac’s front end and continuing through its "warm" and "cold" linac sections to the accumulator ring and, now, the target station, which will direct neutrons eventually to 24 highly specialized instruments. A power upgrade and second target station are already in the conceptual stages.

Operating with more than 100,000 separate and interdependent parts, the SNS is the product of an unprecedented collaboration among six DOE laboratories. Lawrence Berkeley National Laboratory was responsible for the front-end system that generates the proton beam, Los Alamos National Laboratory and Thomas Jefferson National Accelerator Facility designed and built the room-temperature and superconducting sections of the linac, Brookhaven National Laboratory designed the accumulator ring, Argonne National Laboratory is responsible for the initial suite of scientific instrumentation and ORNL designed and built the target station and is ultimately responsible for operating the SNS.

DOE’s Office of Science coordinated the partnership, which is on track to complete the SNS on time and on budget with no compromise in the project’s scope. The seven-year construction of the SNS included a safety record of four million hours without a lost work day due to accidents.

The SNS’s specialized, state-of-the-art instruments will make possible the study of a broad range of materials from superconducting metals to biological tissues. The SNS and ORNL’s recently upgraded High Flux Isotope Reactor together will make Oak Ridge the world’s leading center for studying the structure and dynamics of materials.

The SNS will operate as a user facility that each year will enable 2,000 researchers from the United States and abroad to study the science of materials that form the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Bill Cabage | EurekAlert!
Further information:
http://www.sns.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>