Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First neutrons produced by DOE’s Spallation Neutron Source

03.05.2006


One of the largest and most anticipated U.S. science construction projects of the past several decades has passed its most significant performance test. The Department of Energy’s Spallation Neutron Source, located at Oak Ridge National Laboratory, has generated its first neutrons.



Research conducted at the SNS will lay the groundwork for the next generation of materials research. Scientists believe that the greatly improved ability to understand the structure of materials could lead to a virtually limitless number of innovations, including stronger and lighter airplanes, a new generation of batteries and fuel cells, and time-released drugs that target a specific body organ.

Just after 2 p.m. Friday, a pulse of protons from the SNS’s accelerator complex, traveling at nearly the speed of light, struck its mercury target. The protons "spalled" neutrons from the nuclei of mercury circulating inside the target. These first neutrons were recorded on equipment specially installed for the commissioning.


"To have observed ’first neutrons’ on the initial SNS run is a tribute to the men and women who have worked so hard to design, construct, and now operate this magnificent facility," said Dr. Raymond L. Orbach, Director of the DOE Office of Science. "To bring a project of this scale and cost to completion on budget and ahead of schedule represents a model for all future large scale scientific projects to emulate. All of us owe all who have contributed to this achievement sincere thanks and appreciation for the opportunities you have now created for our world. It is a great moment for science."

With the linac operating initially at a much lower power than its eventual 1.4 megawatts, the target nevertheless was struck by trillions of protons, generating the first of what will become the world’s most intense beams of neutrons for materials research.

"These first neutrons are representative of the technological breakthroughs required to establish the SNS as the world’s leading facility for neutron research," said SNS Director Thom Mason. "We took on the challenges and technical risks involved in designing and delivering the linac, ring and target because we knew how much the scientific user community would benefit from the results."

The SNS’s mercury target is the first of its kind. Researchers chose mercury for the target medium because, as a relatively heavy element, it is rich in neutrons. Mercury also has the capacity to absorb the powerful pulses from the linear accelerator (linac) and accumulator ring. Conventional target materials such as tungsten require cooling with water, which limits power and intensity.

The $1.4 billion SNS will have about eight times the beam power of the world’s currently leading pulsed spallation source. This increase in power, when combined with the advanced instrument technology developed at SNS, will give researchers a net improvement in measured neutron beam intensity of factors of 50 to 100.

The SNS has been commissioned in stages, beginning with the 1,000-foot linac’s front end and continuing through its "warm" and "cold" linac sections to the accumulator ring and, now, the target station, which will direct neutrons eventually to 24 highly specialized instruments. A power upgrade and second target station are already in the conceptual stages.

Operating with more than 100,000 separate and interdependent parts, the SNS is the product of an unprecedented collaboration among six DOE laboratories. Lawrence Berkeley National Laboratory was responsible for the front-end system that generates the proton beam, Los Alamos National Laboratory and Thomas Jefferson National Accelerator Facility designed and built the room-temperature and superconducting sections of the linac, Brookhaven National Laboratory designed the accumulator ring, Argonne National Laboratory is responsible for the initial suite of scientific instrumentation and ORNL designed and built the target station and is ultimately responsible for operating the SNS.

DOE’s Office of Science coordinated the partnership, which is on track to complete the SNS on time and on budget with no compromise in the project’s scope. The seven-year construction of the SNS included a safety record of four million hours without a lost work day due to accidents.

The SNS’s specialized, state-of-the-art instruments will make possible the study of a broad range of materials from superconducting metals to biological tissues. The SNS and ORNL’s recently upgraded High Flux Isotope Reactor together will make Oak Ridge the world’s leading center for studying the structure and dynamics of materials.

The SNS will operate as a user facility that each year will enable 2,000 researchers from the United States and abroad to study the science of materials that form the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Bill Cabage | EurekAlert!
Further information:
http://www.sns.gov

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>