Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More evidence for ’stripes’ in high-temperature superconductors

28.04.2006


Supports earlier controversial finding, may help explain superconducting mechanism



An international collaboration including two physicists from the U.S. Department of Energy’s Brookhaven National Laboratory has published additional evidence to support the existence of "stripes" in high-temperature (Tc) superconductors. The report in the April 27, 2006, issue of Nature strengthens earlier claims that such stripes -- a particular spatial arrangement of electrical charges -- might somehow contribute to the mechanism by which these materials carry current with no resistance. Understanding the mechanism for high-Tc superconductors, which operate at temperatures warmer than traditional superconductors but still far below freezing, may one day help scientists design superconductors able to function closer to room temperature for applications such as more-efficient power transmission.

In the material the scientists studied, as in all materials, the atoms’ negatively charged electrons repel one another. But by trying to stay as far apart as possible, each individual electron is confined to a limited space, which makes the electrons "unhappy" in the sense that it costs energy. "It’s like putting a bunch of claustrophobics into a crowded room," says Brookhaven physicist John Tranquada, who leads the Lab’s role in this work.


To achieve a lower-energy state, the electrons arrange themselves with their spins aligned in alternating directions on adjacent atoms, a configuration known as antiferromagnetic order. Through chemical substitutions, the scientists can effectively "dope" the material with electron "holes," or the absence of electrons, to allow the electrons/holes to move more freely and carry current as a superconductor.

The big question is: How do those electrons/holes arrange themselves?

"Our earlier research suggests that the holes segregate themselves into stripes that alternate with antiferromagnetic regions," Tranquada says. Their conclusion is based on observing a similar magnetic signature in a well-known high-Tc superconductor and a material known to have such charge-segregated stripes. Ironically, the stripes in the latter material are observable only at a particular level of doping where the material loses its superconductivity. But because the magnetic spectra were so similar, Tranquada says, "We inferred that the stripes might also be present in the superconducting materials, just more fluid, or dynamic -- and harder to observe."

Since then, Tranquada’s group has been looking for additional experimental signatures to back up their controversial claim. In the current experiment, they examined the effect of the stripes on vibrations in the crystal lattice. Lattice vibrations, or phonons, are known to play a role in pairing up the electrons that carry current in conventional superconductors.

At the Laboratorie Leon Brillouin, Saclay, in France, the researchers bombarded samples of superconducting materials and the same stripe-ordered non-superconductor with beams of neutrons and measured how the beams scattered. Comparing the energy and momentum of the incoming beams with those scattered by the samples gives the scientists a measure of how much energy and momentum is transferred to the lattice vibrations.

Each of these vibrations, like a vibrating guitar string, normally has a particular, well-defined frequency for a given wavelength. But in the superconductor experiment, at a particular wavelength, the scientists observed an anomaly: a wider range of frequencies in the lattice vibrations.

"It’s as if a musician were able to make a single guitar string produce a chord," Tranquada says.

The scientists observed this anomalous signature most clearly in samples with observable stripe order -- that is, the special material that loses its superconductivity with a particular level of doping. But they also saw it in samples of good superconductors.

"Seeing this feature in both stripe-ordered samples and in good superconductors without static stripes leads us to believe that the signature is indicating the presence of dynamic stripes," Tranquada says.

"This result suggests that stripes are common to copper-oxide superconductors and may be important in the mechanism for high-Tc superconductivity," he adds. To further support their case, Tranquada notes that the anomalous signature goes away in cases where the superconducting material is either under- or over-doped. In this case, the material no longer acts as a superconductor, and may no longer have stripes, he says.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>