Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal how a novel ceramic achieves directional conduction

20.04.2006


An international team led by UCL (University College London) scientists at the London Centre for Nanotechnology has unravelled the properties of a novel ceramic material that could help pave the way for new designs of electronic devices and applications.



Working with researchers from the Swiss Federal Institute of Technology (ETH), Zurich, the University of Tokyo and Lucent Technologies, USA, they reveal in a Letter to Nature that the complex material, which is an oxide of manganese, functions as a self-assembled or ’natural’ layered integrated circuit. By conducting electricity only in certain directions, it opens up the possibility of constructing thin metal layers, or racetracks, insulated from other layers only a few atoms away.

Currently, the race for increasingly small and more powerful devices has relied on two-dimensional integrated circuits, where functional elements such as transistors are engineered via planar patterning of the electrical properties of a semiconductor. Packing more functionalities into tiny electronic devices has until now been achieved by reducing the lateral size of each component, but a new realm of opportunity opens with the ability of building three-dimensional structures.


Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology and co-author of the study, explains: "There is an issue of how you deal with leakage between layers when you pack circuits into three dimensions. Our work with the Tokyo-Lucent groups shows that you can have many layers with little or no leakage between them. This is because we’re not dealing with ordinary electrons, but with larger objects, consisting of electrons bound to magnetic and other disturbances of the atomic fabric of the material, which can’t travel across the barriers between layers."

The flow of electricity in modern electronic devices relies on the fact that electrons move readily in certain solids, such as metals like copper, and are blocked from moving in insulators such as quartz. In ordinary solids, electrons move similarly in all three dimensions, therefore if a material is metallic along one direction, it will be metallic in all directions. The ceramic – a manganese oxide alloy with the chemical formula La1.6Sr1.4Mn2O7 – has fascinated scientists for a decade due to the extraordinary sensitivity of its electrical properties to magnets placed near it. Most interesting was the discovery by the University of Tokyo group that even quite small magnets can switch electrical currents in the same way in this ceramic as in much more expensive, individually fabricated electronic devices of the type being tested for advanced magnetic data storage.

Using one of the classic tools of nanotechnology, the scanning tunnelling microscope, Dr Henrik Rønnow (ETH) and Dr Christoph Renner (LCN and UCL) swept a tiny metallic tip with sub-atomic accuracy over the surface of the ceramic to sense its topographic and electronic properties at spatial resolution of less than the diameter of a single atom. The data showed that this ceramic behaves like a perfect metal along the planes parallel to the surface and like an insulator along the direction perpendicular to the surface.

The results also revealed the first snap-shot of a possible culprit for this unusual electronic behaviour. In conventional solids, charge is carried by simple electrons, but in such ceramics, it is shuttled around by more complex objects, known as polarons, which consist of electrons bound to a magnetic disturbance as well as local displacements of atoms away from their ordinary positions.

Judith Moore | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>