Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-particles Effective in Killing Cancer with One-Two Punch of Chemotherapeutics

12.04.2006


Research studies, based at the University of Pennsylvania, demonstrate that biodegradable nano-particles containing two potent cancer-fighting drugs are effective in killing human breast tumors. The unique properties of the hollow shell nano-particles, known as polymersomes, allow them to deliver two distinct drugs, paclitaxel, the leading cancer drug known by brand names such as Taxol, and doxorubicin directly to tumors implanted in mice. Their findings, presented online in the journal Molecular Pharamaceutics, illustrate the broad clinical potential of polymersomes.



"The system provides a number of advantages over other Trojan horse-style drug delivery system, and should prove a useful tool in fighting a number of diseases," said Dennis Discher, a professor in Penn’s School of Engineering and Applied Science and a member of Penn newly established Institute for Translational Medicine and Therapeutics. "Here we show that drug-delivering polymersomes will break down in the acidic environment of the cancer cells, allowing us to target these drugs within tumor cells."

One key feature of molecular mechanism involves putting pores in the cancer cell membranes and has been simulated with supercomputers by Michael F. Klein and Goundla Srinivas of Penn’s Department of Chemistry. While cell membranes and liposomes (vesicles often used for drug-delivery) are created from a double layer of fatty molecules called phospholipids, a polymersome is comprised of two layers of synthetic polymers. The individual polymers are degradable and considerably larger than individual phospholipids but have many of the same chemical features. This results in a structure that looks like a very small cell or virus.


Discher and his colleagues take advantage of the polymersome properties to ferry their drug combination to the tumor. The large polymers making up the shell allow paclitaxel, which is water-insoluble, to embed within the shell. Doxorubicin, which is water-soluble, stays within the interior of the polymersome until it degrades. According to the researchers, the polymersome and drug combination is self-assembling the structure spontaneously forms when all of the components are suitably mixed together.

"Recent studies have shown that cocktails of paclitaxel and doxorubicin lead to better tumor regression than either drug alone, but there hasn’t been any carrier system that can carry both drugs as efficiently to a tumor," said Fariyal Ahmed, the lead author, former doctoral student in bioengineering,and now a fellow at Harvard Medical School. "Polymersomes get around those limitations

Discher developed polymersomes with Penn bioengineer Daniel Hammer in the 1990s. The Discher lab is further studying the drug- and gene-delivery capabilities of polymersomes, tailoring their shapes, sizes, loading and degradability to each application. Discher theorizes that polymersomes could be made capable of traveling to places in the body that are difficult for most drug-carrier systems to access.

This research was supported by grants from the National Institutes of Health, the National Science Foundation-Materials Research Science and Engineering Center and the Nanotechnology Institute.

Co-authors on these findings include Aaron Brannan and Frank Bates of the University of Minnesota and Refika Pakunlu and Tamara Minko of Rutgers University.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>