Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano-particles Effective in Killing Cancer with One-Two Punch of Chemotherapeutics


Research studies, based at the University of Pennsylvania, demonstrate that biodegradable nano-particles containing two potent cancer-fighting drugs are effective in killing human breast tumors. The unique properties of the hollow shell nano-particles, known as polymersomes, allow them to deliver two distinct drugs, paclitaxel, the leading cancer drug known by brand names such as Taxol, and doxorubicin directly to tumors implanted in mice. Their findings, presented online in the journal Molecular Pharamaceutics, illustrate the broad clinical potential of polymersomes.

"The system provides a number of advantages over other Trojan horse-style drug delivery system, and should prove a useful tool in fighting a number of diseases," said Dennis Discher, a professor in Penn’s School of Engineering and Applied Science and a member of Penn newly established Institute for Translational Medicine and Therapeutics. "Here we show that drug-delivering polymersomes will break down in the acidic environment of the cancer cells, allowing us to target these drugs within tumor cells."

One key feature of molecular mechanism involves putting pores in the cancer cell membranes and has been simulated with supercomputers by Michael F. Klein and Goundla Srinivas of Penn’s Department of Chemistry. While cell membranes and liposomes (vesicles often used for drug-delivery) are created from a double layer of fatty molecules called phospholipids, a polymersome is comprised of two layers of synthetic polymers. The individual polymers are degradable and considerably larger than individual phospholipids but have many of the same chemical features. This results in a structure that looks like a very small cell or virus.

Discher and his colleagues take advantage of the polymersome properties to ferry their drug combination to the tumor. The large polymers making up the shell allow paclitaxel, which is water-insoluble, to embed within the shell. Doxorubicin, which is water-soluble, stays within the interior of the polymersome until it degrades. According to the researchers, the polymersome and drug combination is self-assembling the structure spontaneously forms when all of the components are suitably mixed together.

"Recent studies have shown that cocktails of paclitaxel and doxorubicin lead to better tumor regression than either drug alone, but there hasn’t been any carrier system that can carry both drugs as efficiently to a tumor," said Fariyal Ahmed, the lead author, former doctoral student in bioengineering,and now a fellow at Harvard Medical School. "Polymersomes get around those limitations

Discher developed polymersomes with Penn bioengineer Daniel Hammer in the 1990s. The Discher lab is further studying the drug- and gene-delivery capabilities of polymersomes, tailoring their shapes, sizes, loading and degradability to each application. Discher theorizes that polymersomes could be made capable of traveling to places in the body that are difficult for most drug-carrier systems to access.

This research was supported by grants from the National Institutes of Health, the National Science Foundation-Materials Research Science and Engineering Center and the Nanotechnology Institute.

Co-authors on these findings include Aaron Brannan and Frank Bates of the University of Minnesota and Refika Pakunlu and Tamara Minko of Rutgers University.

Greg Lester | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>