Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists fashion semiconductors into flexible membranes

10.04.2006


University of Wisconsin-Madison researchers have demonstrated a way to release thin membranes of semiconductors from a substrate and transfer them to new surfaces-an advance that could unite the properties of silicon and many other materials, including diamond, metal and even plastic.



Led by materials science and engineering graduate student Michelle Roberts, the team reports in the April 9 issue of Nature Materials that the freed membranes, just tens of nanometers thick, retain all the properties of silicon in wafer form. Yet, the nanomembranes are flexible, and by varying the thicknesses of the silicon and silicon-germanium layers composing them, scientists can make membrane shapes ranging from flat to curved to tubular.

Most importantly, the technique stretches the nanomembranes in a predictable and easily controlled manner, says materials science and engineering professor Max Lagally, who is Roberts’ advisor. In silicon that is stretched, or under tensile strain, current flows faster-a fact engineers already exploit to help control silicon’s conductivity and produce speedier electronics. Strain also becomes important whenever different materials are integrated.


The new technique makes tuning the strain of materials simpler, while avoiding the defects that normally result. In addition, Lagally says: "We’re no longer held to a rigid rock of material. We now have the ability to transfer the membranes to anything we want. So, there are some really novel things we can do."

Potential applications, he says, include flexible electronic devices, faster transistors, nano-size photonic crystals that steer light, and lightweight sensors for detecting toxins in the environment or biological events in cells.

Although it could make controlling strain easier, the technique is not manufacturing-ready, cautions physics professor Mark Eriksson, because it requires the release of nanomembranes into solution before bonding to other materials.

"What we’ve done is a first demonstration," says Eriksson. "But now that we’ve shown the underlying principles are sound, we can begin taking the next steps."

In building electronic devices, engineers routinely layer materials with different crystal structures on top of one another, creating strain. Larger germanium atoms, for example, want to sit farther apart in a crystalline lattice than do smaller atoms of silicon. Thus, when a thin layer of silicon-germanium alloy is bonded to a thicker silicon substrate, the silicon’s lattice structure dominates, forcing the germanium atoms into unnaturally close proximity and compressing the silicon-germanium.

Scientists can then use the compressive strain in the silicon-germanium to strain a thin silicon layer grown on top, but only if the alloy’s strain is controlled. To do so, they typically deposit many layers of silicon-germanium. As layers are added and strain builds, "dislocations," or breaks in the crystal lattice, naturally develop, which give germanium atoms the extra room they need and relax some of the strain. But the technique is time-consuming and expensive, and the defects can scatter current-carrying electrons and otherwise degrade device performance.

The Wisconsin team’s goal was to integrate silicon and silicon-germanium and manage strain without having to introduce defects. The scientists made a three-layer nanomembrane composed of a thin silicon-germanium layer sandwiched between two silicon layers of similar thinness. The membrane, in turn, sat atop a silicon dioxide layer in a silicon-on-insulator substrate. To release the nanomembrane, the researchers etched away the oxide layer with hydrofluoric acid.

"When we remove the membrane, the silicon-germanium is no longer trying to fight the substrate, which is like a big rock holding it from below. Instead, it’s just fighting the two very thin silicon layers," says Lagally. "So the silicon-germanium expands and takes the silicon with it."

Pulled by the silicon-germanium, the silicon now exhibits tensile strain, which the researchers can readily adjust by varying the thicknesses of the layers. They call the technique "elastic strain sharing" because in the freed membrane, strain is balanced, or shared, between the three layers.

Levente Klein, a postdoctoral researcher working with Eriksson, also showed that the strain produced by the technique traps electrons in the top silicon layer, which is the end goal for many devices that integrate silicon and silicon-germanium, says Eriksson.

"In this research, there’s a nice synergy between the structural characteristics of the material and the consequences for electronics," he says.

Although the Wisconsin team grew their nanomembranes on silicon-on-insulator substrates, the method should apply to many substances beyond semiconductors, says Lagally, such as ferroelectric and piezoelectric materials. All that’s needed is a layer, like an oxide, that can be removed to free the nanomembranes.

"In any application where crystallinity and strain are important, the idea of making membranes should be of value," says Lagally.

Max Lagally | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>