Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism shepherds microlenses to excavate ’nanocavities’

31.03.2006


A Duke University engineer is "herding" tiny lenses with magnetic ferrofluids, precisely aligning them so that they focus bursts of light to excavate patterns of cavities on surfaces.



Such photolithographically produced "nanocavities" -– each only billionths of a meter across – might serve as repositories for molecules engineered as chemical detectors, said Benjamin Yellen, an assistant professor of mechanical engineering and materials science at Duke’s Pratt School of Engineering. Alternatively, he said, ringlike structures created via a similar technique might be useful for fabricating magnetic data storage elements.

Yellen will discuss his research progress as part of a session that begins at 2 p.m. on Thursday, March 30, 2006, during a national meeting of the American Chemical Society in Atlanta. His talk will be held in the Juniper room of the OMNI at CNN Center.


His experiments are an extension of National Science Foundation-supported work described in the June, 2005 issue of the Proceedings of the National Academy of Sciences, he said.

In that article, Yellen and his coauthors showed how to create networks of magnetic "traps" made of cobalt on silicon and glass wafers. Those traps were used to manipulate "ferrofluid" suspensions of magnetic iron oxide particles added above them.

With widths in the "nanometer" – billionths of a meter -- size range, the ferrofluid particles could either be held in place by the underlying magnetic traps, or moved from one trap to another via interactions with additional imposed magnetic fields.

The researchers thus used the magnetically-directed ferrofluid to "shepherd" around non-magnetic latex beads measuring between 90 and 5,000 nanometers. Those beads could even be assembled into complex patterns, according to the report.

At Duke, Yellen is expanding on that initial work by using ferrofluid to stretch molecules, to surround virus particles in order to enable their detection and identification and to assemble microparticles and nanoparticles into arrays on a surface.

His group’s experiments with microscopic photolithography builds on work by Harvard University chemist George Whitesides, who developed a "nearfield lithography" technique that uses arrays of transparent microscopic spheres to focus light in order to build tiny patterns of holes.

"Any spherical structures that are transparent to light will act as little lenses that can focus light underneath themselves," Yellen said. "We’re using ferrofluid to direct the assembly of these microlenses."

Conventional photolithographic techniques used to build computer chips involve laying down "photoresist" materials that render a surface potentially vulnerable to chemical etching upon exposure to light.

In their experiments, Yellen and his students are installing magnetic traps on surfaces, then coating those surfaces with photoresist. After adding quantities of ferrofluids and transparent microspheres, they use magnetic fields to induce the ferrofluids to maneuver the microspheres precisely above the magnetic traps.

They can then focus ultraviolet light through the microspheres to "expose" tiny dots of photoresist coating above those traps. Finally, they can chemically etch away the light-exposed dots, creating a pattern of tiny holes with a dot-wide trap surface exposed at each bottom.

"So we can form quasi-self-assembled holes that align directly on top of the cobalt magnetic traps," Yellen said. His group’s goals include using magnetically directed ferrofluids to maneuver molecules into those holes. Once embedded inside, the molecules could then serve as tiny chemical detectors.

The Duke researchers also found that longer photoresist exposures to ultraviolet light, and a different use of the etching process, allow them to transform cobalt dots at the bottom of holes into "cobalt rings," he said. "Those may be useful as memory elements for data storage.

"Right now, this is just basic scientific inquiry," Yellen said. "There’s not yet a clear-cut application for this technology. We’re just trying to explore all the ways that these ferrofluids could be used."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>