Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism shepherds microlenses to excavate ’nanocavities’

31.03.2006


A Duke University engineer is "herding" tiny lenses with magnetic ferrofluids, precisely aligning them so that they focus bursts of light to excavate patterns of cavities on surfaces.



Such photolithographically produced "nanocavities" -– each only billionths of a meter across – might serve as repositories for molecules engineered as chemical detectors, said Benjamin Yellen, an assistant professor of mechanical engineering and materials science at Duke’s Pratt School of Engineering. Alternatively, he said, ringlike structures created via a similar technique might be useful for fabricating magnetic data storage elements.

Yellen will discuss his research progress as part of a session that begins at 2 p.m. on Thursday, March 30, 2006, during a national meeting of the American Chemical Society in Atlanta. His talk will be held in the Juniper room of the OMNI at CNN Center.


His experiments are an extension of National Science Foundation-supported work described in the June, 2005 issue of the Proceedings of the National Academy of Sciences, he said.

In that article, Yellen and his coauthors showed how to create networks of magnetic "traps" made of cobalt on silicon and glass wafers. Those traps were used to manipulate "ferrofluid" suspensions of magnetic iron oxide particles added above them.

With widths in the "nanometer" – billionths of a meter -- size range, the ferrofluid particles could either be held in place by the underlying magnetic traps, or moved from one trap to another via interactions with additional imposed magnetic fields.

The researchers thus used the magnetically-directed ferrofluid to "shepherd" around non-magnetic latex beads measuring between 90 and 5,000 nanometers. Those beads could even be assembled into complex patterns, according to the report.

At Duke, Yellen is expanding on that initial work by using ferrofluid to stretch molecules, to surround virus particles in order to enable their detection and identification and to assemble microparticles and nanoparticles into arrays on a surface.

His group’s experiments with microscopic photolithography builds on work by Harvard University chemist George Whitesides, who developed a "nearfield lithography" technique that uses arrays of transparent microscopic spheres to focus light in order to build tiny patterns of holes.

"Any spherical structures that are transparent to light will act as little lenses that can focus light underneath themselves," Yellen said. "We’re using ferrofluid to direct the assembly of these microlenses."

Conventional photolithographic techniques used to build computer chips involve laying down "photoresist" materials that render a surface potentially vulnerable to chemical etching upon exposure to light.

In their experiments, Yellen and his students are installing magnetic traps on surfaces, then coating those surfaces with photoresist. After adding quantities of ferrofluids and transparent microspheres, they use magnetic fields to induce the ferrofluids to maneuver the microspheres precisely above the magnetic traps.

They can then focus ultraviolet light through the microspheres to "expose" tiny dots of photoresist coating above those traps. Finally, they can chemically etch away the light-exposed dots, creating a pattern of tiny holes with a dot-wide trap surface exposed at each bottom.

"So we can form quasi-self-assembled holes that align directly on top of the cobalt magnetic traps," Yellen said. His group’s goals include using magnetically directed ferrofluids to maneuver molecules into those holes. Once embedded inside, the molecules could then serve as tiny chemical detectors.

The Duke researchers also found that longer photoresist exposures to ultraviolet light, and a different use of the etching process, allow them to transform cobalt dots at the bottom of holes into "cobalt rings," he said. "Those may be useful as memory elements for data storage.

"Right now, this is just basic scientific inquiry," Yellen said. "There’s not yet a clear-cut application for this technology. We’re just trying to explore all the ways that these ferrofluids could be used."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>