Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism shepherds microlenses to excavate ’nanocavities’

31.03.2006


A Duke University engineer is "herding" tiny lenses with magnetic ferrofluids, precisely aligning them so that they focus bursts of light to excavate patterns of cavities on surfaces.



Such photolithographically produced "nanocavities" -– each only billionths of a meter across – might serve as repositories for molecules engineered as chemical detectors, said Benjamin Yellen, an assistant professor of mechanical engineering and materials science at Duke’s Pratt School of Engineering. Alternatively, he said, ringlike structures created via a similar technique might be useful for fabricating magnetic data storage elements.

Yellen will discuss his research progress as part of a session that begins at 2 p.m. on Thursday, March 30, 2006, during a national meeting of the American Chemical Society in Atlanta. His talk will be held in the Juniper room of the OMNI at CNN Center.


His experiments are an extension of National Science Foundation-supported work described in the June, 2005 issue of the Proceedings of the National Academy of Sciences, he said.

In that article, Yellen and his coauthors showed how to create networks of magnetic "traps" made of cobalt on silicon and glass wafers. Those traps were used to manipulate "ferrofluid" suspensions of magnetic iron oxide particles added above them.

With widths in the "nanometer" – billionths of a meter -- size range, the ferrofluid particles could either be held in place by the underlying magnetic traps, or moved from one trap to another via interactions with additional imposed magnetic fields.

The researchers thus used the magnetically-directed ferrofluid to "shepherd" around non-magnetic latex beads measuring between 90 and 5,000 nanometers. Those beads could even be assembled into complex patterns, according to the report.

At Duke, Yellen is expanding on that initial work by using ferrofluid to stretch molecules, to surround virus particles in order to enable their detection and identification and to assemble microparticles and nanoparticles into arrays on a surface.

His group’s experiments with microscopic photolithography builds on work by Harvard University chemist George Whitesides, who developed a "nearfield lithography" technique that uses arrays of transparent microscopic spheres to focus light in order to build tiny patterns of holes.

"Any spherical structures that are transparent to light will act as little lenses that can focus light underneath themselves," Yellen said. "We’re using ferrofluid to direct the assembly of these microlenses."

Conventional photolithographic techniques used to build computer chips involve laying down "photoresist" materials that render a surface potentially vulnerable to chemical etching upon exposure to light.

In their experiments, Yellen and his students are installing magnetic traps on surfaces, then coating those surfaces with photoresist. After adding quantities of ferrofluids and transparent microspheres, they use magnetic fields to induce the ferrofluids to maneuver the microspheres precisely above the magnetic traps.

They can then focus ultraviolet light through the microspheres to "expose" tiny dots of photoresist coating above those traps. Finally, they can chemically etch away the light-exposed dots, creating a pattern of tiny holes with a dot-wide trap surface exposed at each bottom.

"So we can form quasi-self-assembled holes that align directly on top of the cobalt magnetic traps," Yellen said. His group’s goals include using magnetically directed ferrofluids to maneuver molecules into those holes. Once embedded inside, the molecules could then serve as tiny chemical detectors.

The Duke researchers also found that longer photoresist exposures to ultraviolet light, and a different use of the etching process, allow them to transform cobalt dots at the bottom of holes into "cobalt rings," he said. "Those may be useful as memory elements for data storage.

"Right now, this is just basic scientific inquiry," Yellen said. "There’s not yet a clear-cut application for this technology. We’re just trying to explore all the ways that these ferrofluids could be used."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>