Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sets benchmark properties for popular conducting plastic

31.03.2006


Results essential to optimize materials for diverse applications


Atomic force microscopy image of aligned nanofibrils of a highly conducting plastic. Each nanofibril is made of stacks of regioregular polythiophene (RRP) molecules. Charge carriers move particularly well along the...



Steadily increasing the length of a purified conducting polymer vastly improves its ability to conduct electricity, report researchers at Carnegie Mellon University, whose work appeared March 22 in the Journal of the American Chemical Society. Their study of regioregular polythiophenes (RRPs) establishes benchmark properties for these materials that suggest how to optimize their use for a new generation of diverse materials, including solar panels, transistors in radio frequency identification tags, and light-weight, flexible, organic light-emitting displays.

"We found that by growing very pure, single RRP chains made of uniform small units, we dramatically increased the ability of these polymers to conduct electricity," said Richard D. McCullough, who initially discovered RRPs in 1992. "This work establishes basic properties that researchers everywhere need to know to create new, better conducting plastics. In fact, designing materials based on these results could completely revolutionize the printable electronics industry."


"Our results are very significant, since they cast new light on the mechanism by which polymers conduct electricity," said Tomasz Kowalewski, associate professor of chemistry and senior author on the study.

Unlike plastics that insulate, or prevent, the flow of electrical charges, conducting plastics actually facilitate current through their nanostructure. Conducting plastics are the subject of intense research, given that they could offer light-weight, flexible, energy-saving alternatives for materials used in solar panels and screen displays. And because they can be dissolved in solution, affixed to a variety of templates like silicon and manufactured on an industrial scale, RRPs are considered among the most promising conducting plastics in nanotech research today, according to McCullough, dean of the Mellon College of Science and professor of chemistry.

"Our tests showed that highly uniform RRPs self-assemble into well-defined elongated aggregates called nanofibrils, which stack one against the other," Kowalewski said. "About 5,000 of these nanofibrils would fit side by side in the width of a human hair. The presence of these well-defined structures allowed us for the first time to make a connection between the size of polymer molecules, the type of structure they form and the ease with which current can move through nanofibril aggregates." (See image.)

The vast improvement in conductivity is tied to several key properties that were unambiguously shown for the first time in this study, according to Kowalewski.

"We made the key discovery that mobility -- how easily electrons move -- increases exponentially as the width of a nanofibril increases," Kowalewski said. Each rope-like nanofibril actually is a stack of RRP molecules, so the longer these molecules, the wider the nanofibril and the faster the electrical conductivity. (See image insert of RRP stacks.) In this way, electricity moves preferably perpendicular through the rows of naturally aligned nanofibrils.

"We found that charge carriers encounter fewer hurdles when jumping between wider nanofibrils," said Kowalewski. "Ultimately through this study, we found that the nanostructure of our conducting plastic profoundly enhances its ability to conduct electricity."

Conductivity increases with the length of an RRP molecule -- and hence the width of each nanofibril -- because it takes less time for a charge carrier to cross through wider nanofibrils than narrower ones. (Charge carriers are unbound particles that carry an electric charge through a molecular structure). All this can be tied to the fact that a charge carrier that enters a short molecule disrupts its energetic environment considerably more than if that same charge carrier enters a long molecule. This energetic hurdle, called reorganization energy, thus slows the movement of charge carriers that move from short molecule to short molecule. The energetic hurdle is lower for a long molecule, which can absorb changes to its electrical environment more easily. This phenomenon could be one of the reasons why charge carriers jump more quickly from long molecule to long molecule, according to Kowalewski.

"We hope that these findings will stimulate further theoretical and experimental work which will significantly improve the performance of polymer-based electronics and open the way to a wide range of applications," Kowalewski said.

To show that increasing the width of RRP nanofibrils exponentially increased charge carrier mobility, the Carnegie Mellon team first created pure RRPs of uniform size, or molecular weight. Next, they placed the drops of RRPs dissolved in a solvent onto silicon chips whose surfaces were specially prepared for use as nanotransistors. Such "drop casting" allowed the team to create a series of nanostructures that varied in accordance with the length of the RRP chains initially present in solution.

The team ran a current through these different RRP-based nanotransistors to measure their ability to conduct electricity. They used atomic force microscopy and a technique called grazing-incidence small-angle X-ray scattering to verify that periodic, stacked structure of different RRPs indeed formed nanofibrils of corresponding widths. The latter technique was performed using the High Energy Synchrotron Source at Cornell University.

The team of investigators included students Rui Zhang in the Department of Chemistry; Bo Li in the laboratory of David Lambeth, professor of electrical and computer engineering; and faculty from the Department of Physics, who participated in X-ray scattering studies.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>