Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sets benchmark properties for popular conducting plastic

31.03.2006


Results essential to optimize materials for diverse applications


Atomic force microscopy image of aligned nanofibrils of a highly conducting plastic. Each nanofibril is made of stacks of regioregular polythiophene (RRP) molecules. Charge carriers move particularly well along the...



Steadily increasing the length of a purified conducting polymer vastly improves its ability to conduct electricity, report researchers at Carnegie Mellon University, whose work appeared March 22 in the Journal of the American Chemical Society. Their study of regioregular polythiophenes (RRPs) establishes benchmark properties for these materials that suggest how to optimize their use for a new generation of diverse materials, including solar panels, transistors in radio frequency identification tags, and light-weight, flexible, organic light-emitting displays.

"We found that by growing very pure, single RRP chains made of uniform small units, we dramatically increased the ability of these polymers to conduct electricity," said Richard D. McCullough, who initially discovered RRPs in 1992. "This work establishes basic properties that researchers everywhere need to know to create new, better conducting plastics. In fact, designing materials based on these results could completely revolutionize the printable electronics industry."


"Our results are very significant, since they cast new light on the mechanism by which polymers conduct electricity," said Tomasz Kowalewski, associate professor of chemistry and senior author on the study.

Unlike plastics that insulate, or prevent, the flow of electrical charges, conducting plastics actually facilitate current through their nanostructure. Conducting plastics are the subject of intense research, given that they could offer light-weight, flexible, energy-saving alternatives for materials used in solar panels and screen displays. And because they can be dissolved in solution, affixed to a variety of templates like silicon and manufactured on an industrial scale, RRPs are considered among the most promising conducting plastics in nanotech research today, according to McCullough, dean of the Mellon College of Science and professor of chemistry.

"Our tests showed that highly uniform RRPs self-assemble into well-defined elongated aggregates called nanofibrils, which stack one against the other," Kowalewski said. "About 5,000 of these nanofibrils would fit side by side in the width of a human hair. The presence of these well-defined structures allowed us for the first time to make a connection between the size of polymer molecules, the type of structure they form and the ease with which current can move through nanofibril aggregates." (See image.)

The vast improvement in conductivity is tied to several key properties that were unambiguously shown for the first time in this study, according to Kowalewski.

"We made the key discovery that mobility -- how easily electrons move -- increases exponentially as the width of a nanofibril increases," Kowalewski said. Each rope-like nanofibril actually is a stack of RRP molecules, so the longer these molecules, the wider the nanofibril and the faster the electrical conductivity. (See image insert of RRP stacks.) In this way, electricity moves preferably perpendicular through the rows of naturally aligned nanofibrils.

"We found that charge carriers encounter fewer hurdles when jumping between wider nanofibrils," said Kowalewski. "Ultimately through this study, we found that the nanostructure of our conducting plastic profoundly enhances its ability to conduct electricity."

Conductivity increases with the length of an RRP molecule -- and hence the width of each nanofibril -- because it takes less time for a charge carrier to cross through wider nanofibrils than narrower ones. (Charge carriers are unbound particles that carry an electric charge through a molecular structure). All this can be tied to the fact that a charge carrier that enters a short molecule disrupts its energetic environment considerably more than if that same charge carrier enters a long molecule. This energetic hurdle, called reorganization energy, thus slows the movement of charge carriers that move from short molecule to short molecule. The energetic hurdle is lower for a long molecule, which can absorb changes to its electrical environment more easily. This phenomenon could be one of the reasons why charge carriers jump more quickly from long molecule to long molecule, according to Kowalewski.

"We hope that these findings will stimulate further theoretical and experimental work which will significantly improve the performance of polymer-based electronics and open the way to a wide range of applications," Kowalewski said.

To show that increasing the width of RRP nanofibrils exponentially increased charge carrier mobility, the Carnegie Mellon team first created pure RRPs of uniform size, or molecular weight. Next, they placed the drops of RRPs dissolved in a solvent onto silicon chips whose surfaces were specially prepared for use as nanotransistors. Such "drop casting" allowed the team to create a series of nanostructures that varied in accordance with the length of the RRP chains initially present in solution.

The team ran a current through these different RRP-based nanotransistors to measure their ability to conduct electricity. They used atomic force microscopy and a technique called grazing-incidence small-angle X-ray scattering to verify that periodic, stacked structure of different RRPs indeed formed nanofibrils of corresponding widths. The latter technique was performed using the High Energy Synchrotron Source at Cornell University.

The team of investigators included students Rui Zhang in the Department of Chemistry; Bo Li in the laboratory of David Lambeth, professor of electrical and computer engineering; and faculty from the Department of Physics, who participated in X-ray scattering studies.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>