Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid ventilation

29.03.2006


To live we need to breathe. Prior to being born we carry this activity out through the placenta and subsequently by means of our lungs. In normal development, the lungs of the foetus are filled with amniotic liquid and, on being born, the first cry activates this respiration surface. But the main problem that premature babies have is that their lungs are not well formed. Moreover, they often lack surfactant, a compound formed by proteins and lipids that avoids the lungs folding in on themselves before the baby gets stronger.



The respirators usually employd in these cases provide artificial surfactant, but not always in sufficient amounts to provide correct therapy. In order to alleviate this situation, the Nautical School at the University of the Basque Country has developed a liquid respiration respirator.

The machine simulates placentary respiration by filling the lungs of the premature baby with liquid and then the respirator introduces and extracts the required quantity of liquid at a suitable respiratory rhythm. The amount of liquid administered is usually in the order of 10 millilitres per kilogram of the baby’s weight.


Perfluorocarbons instead of air

Perfluorocarbon is used in liquid respiration, as it has a suitable surface tension in order to maintain the pulmonary structure and the fluorine has good properties for the transport of and interchange between blood and the gases, O2 and CO2. The respirator syringes introduce the oxygenated perfluorocarbon to the very last alveola. Here oxygen is released and carbon dioxide taken up in the same way as on the respiration surface. Then the respirator extracts part of the perfluorocarbon from the lungs and introduces the next oxygenated dose. The same machine carries out the removal of CO2 from the perfluorocarbon and adds oxygen to it.

Being full of liquid, the problems of pressure associated with conventional assisted respiration are avoided because the lungs of the premature baby suffer less stress and respire more easily.

However, this story does not have a happy ending. The respirator, for the moment, is no more than a prototype. In the experiments carried out at the Cruces hospital in Bilbao with artificial lungs and with animals, the results have been very good. It has even been applied successfully in more than 80 death-threatening situations in premature babies. But the perfluorocarbon for medical use is not available on the market. As premature babies need very small quantities and no commercial application for adults has been found, the patent-owning company has opted not to market it arguing that it lacks profitability. Thus, an industrial version of the liquid respirator is yet to be developed.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=930&hizk=I

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>