Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid ventilation

29.03.2006


To live we need to breathe. Prior to being born we carry this activity out through the placenta and subsequently by means of our lungs. In normal development, the lungs of the foetus are filled with amniotic liquid and, on being born, the first cry activates this respiration surface. But the main problem that premature babies have is that their lungs are not well formed. Moreover, they often lack surfactant, a compound formed by proteins and lipids that avoids the lungs folding in on themselves before the baby gets stronger.



The respirators usually employd in these cases provide artificial surfactant, but not always in sufficient amounts to provide correct therapy. In order to alleviate this situation, the Nautical School at the University of the Basque Country has developed a liquid respiration respirator.

The machine simulates placentary respiration by filling the lungs of the premature baby with liquid and then the respirator introduces and extracts the required quantity of liquid at a suitable respiratory rhythm. The amount of liquid administered is usually in the order of 10 millilitres per kilogram of the baby’s weight.


Perfluorocarbons instead of air

Perfluorocarbon is used in liquid respiration, as it has a suitable surface tension in order to maintain the pulmonary structure and the fluorine has good properties for the transport of and interchange between blood and the gases, O2 and CO2. The respirator syringes introduce the oxygenated perfluorocarbon to the very last alveola. Here oxygen is released and carbon dioxide taken up in the same way as on the respiration surface. Then the respirator extracts part of the perfluorocarbon from the lungs and introduces the next oxygenated dose. The same machine carries out the removal of CO2 from the perfluorocarbon and adds oxygen to it.

Being full of liquid, the problems of pressure associated with conventional assisted respiration are avoided because the lungs of the premature baby suffer less stress and respire more easily.

However, this story does not have a happy ending. The respirator, for the moment, is no more than a prototype. In the experiments carried out at the Cruces hospital in Bilbao with artificial lungs and with animals, the results have been very good. It has even been applied successfully in more than 80 death-threatening situations in premature babies. But the perfluorocarbon for medical use is not available on the market. As premature babies need very small quantities and no commercial application for adults has been found, the patent-owning company has opted not to market it arguing that it lacks profitability. Thus, an industrial version of the liquid respirator is yet to be developed.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=930&hizk=I

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>