Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling the chemical reactions of nanoparticles

28.03.2006


As science enters the world of the very small, researchers will be searching for new ways to study nanoparticles and their properties. For the past several years, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have been experimenting with new methods for preparing nanoparticles on metal supports, with the aim of creating model catalyst systems to better study the special reactivity of nano-sized catalyst particles.



Brookhaven’s Jan Hrbek will review several of the Lab’s results at the 231st national meeting of the American Chemical Society at the Georgia World Congress Center in Atlanta, GA. Hrbek’s talk will be held on Monday, March 27 at 2:40 pm in Room C209.

Catalysis, the acceleration of a chemical reaction, is tremendously important as an industrial process, underlying most of our energy supply (oil-to-fuel conversion, for example) and 80 percent of the products of the chemical industry. There is a substantial need to understand how catalysts work, and learn to design and make better catalysts. The work at Brookhaven is aimed at understanding how the detailed atomic structures of model systems of certain classes of catalysts contribute to their activity. Hrbek’s talk will review work in making models of nanometer scale particles that are the active material in many catalyst particles.


Solid surfaces often act as catalysts by binding molecules, weakening their internal bonds and allowing them to react to form new molecular products. These solid surfaces are usually nanometer-sized particles supported on micron-sized powder particles. Reacting gases or liquids flow over them to undergo reactions into the desired products. Examples of active materials include metals, metal oxides, and other metal compounds (metal sulfides and metal carbides, for example). These are known collectively as heterogeneous catalysts since they are in a separate (solid) phase from the reacting gas or liquid stream that flows over them. Very tiny particles allow most of the solid material’s atoms to be at the surface, in contact with the reacting stream. This fine dispersion is necessary to guarantee efficient use of the catalyst material. The nanometer size also is often important in improving the reactivity and selectivity of the particles. These tiny particles are often strained and the strain can promote formation of more stable active sites for a particular chemical transformation.

"Actual catalysts are very complex, not well controlled materials, often with a wide range of particle sizes and structures," Hrbek said. "It is often difficult to sort out which atomic sites are catalytically active. The goals of these model studies are to be able to determine atomic structures of the reactive sites, and to understand how reactions occur at those sites. This work ultimately aims to strengthen our ability to design better catalysts."

Among the most interesting results of the Brookhaven studies is a new method to create well-defined nanoparticles of metal compounds that are of catalytic interest.

"Reactive layer assisted deposition, or RLAD, allows us to make well-dispersed, reasonably uniform nanoparticles of metal compounds on well-defined supports," Hrbek said. "These can then be structurally characterized on the nano scale and their reactivity evaluated by using modern surface-sensitive techniques. This opens an interesting opportunity to examine catalytic activity in metal compounds that were also atomically characterized."

Several other laboratories studying nanoparticles of metal compounds have already adopted the RLAD method.

"It is a challenge to form uniform particles in this size range, to disperse them uniformly on the substrate, and to ’look’ at them with advanced microscopies to understand their structure," Hrbek said. "The tools being applied to form and study the particles are one aspect of Brookhaven’s growing capabilities in nanoscience."

Kay Cordtz | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>