Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressable photonic crystals produce full-colour fingerprints and promise enhanced security

15.03.2006


Experiment reveals layers of data missed by traditional ink fingerprints

In the future, law enforcement officials may take full-colour fingerprints using new technology developed by a University of Toronto-led team of international researchers.

Far from the basic black-and-white fingerprints collected today, the new technology would use elastic photonic crystals to capture data-rich fingerprints in multiple colours, but the fingerprinting technique is just one potential application for the new technology. A paper on the new research is featured on the cover of the current issue of the journal Nature Materials.



"You can elastically deform these crystals and produce different colours," says lead author André Arsenault, a PhD candidate in the laboratory of Geoffrey Ozin, a University Professor in the Department of Chemistry and a Canada Research Chair in materials chemistry.

Photonic crystals are a relatively new development in the scientific quest to control light. Ozin’s lab first created photonic crystals in 2002, using spherical particles of silica mere micrometres in diameter that self-assemble into neat layers, creating what’s known as an opal. After filling the space between the spheres with silicon, they used acid etching to remove the silica balls. This left an ordered sponge of air bubbles in silicon known as an inverse opal. This photonic crystal material, the first of its kind, did indeed trap light. These photonic crystals can produce colour based on how an electromagnetic wave interacts with the structure -- meaning that it could be tuned to produce any colour.

In the new study, the team injected an elastic compound between the spheres, which were then etched away, leaving an orderly and compressible elastic foam that can be transferred onto virtually any surface, such as glass, metal or plastic. The material changes colour based on how far the spheres are separated.

"The material we have is very, very thin," Arsenault says. "We can coat it onto any surface we want." If the foam is compressed, it alters the lattice dimensions, changing the wavelength of light that it produces. The team demonstrated the fingerprint application, using Arsenault’s finger, and produced both still images and a video of the process, which captures detailed information about pressure patterns and surface ridges that may not be visible to the naked eye.

Taking it one step further, Arsenault made a rubber replica of his fingertip, which might fool a traditional fingerprint scan. "If you press the rubber replica into the material, the pressure impressions that you get are very different," he says. "The lines are much sharper, because the material is less soft. From the standpoint of biometrics, this could provide better security."

Arsenault says the technology could be used not only for colour fingerprints, but in sensors for air-bag release mechanisms in cars, strain and torque sensors on support beams of high-rise buildings and in laser sources. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the University of Toronto, EC NoE Phoremost and Deutsche Forschungsgemeinschaft.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>