Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are tougher electronic components on the way?

10.03.2006


Materials science gets a nitride boost



Like modern day alchemists, materials scientists often turn unassuming substances into desirable ones. But instead of working metal into gold, they create strange new compounds that could make the electronic components of the future smaller, faster, and more durable. Alexander Goncharov of the Carnegie Institution’s Geophysical Laboratory and colleagues* have used extreme temperatures and pressures to make two durable compounds called noble metal nitrides; they are the first to succeed in making one of them, and the first to accurately determine the chemical formula of the other. Both nitrides possess a diamond-like hardness, and some compositions might have very low, nearly superconductive electrical resistance--a blend that could prove quite valuable to industry.

The two nitrides--one containing iridium and another containing platinum--could eventually replace the titanium nitrides currently valued by the semiconductor industry as surface coatings because of their strength and durability. The researchers believe iridium and platinum nitrides might be even more durable. The group’s work is presented in the March 3, 2006, issue of the journal Science.


Like several other metals such as gold, silver, and palladium, platinum and iridium are noble metals. Such metals are resistant to corrosion and oxidation, and do not easily form compounds with other elements unless coaxed to do so under very high temperatures and pressures. Goncharov and his colleagues used a special tool called a diamond anvil cell to compress the samples to nearly half a million times the atmospheric pressure at sea level. Then they used a focused laser to heat the samples to over 3000 degrees Fahrenheit, or roughly the temperature of a steel mill blast furnace. Under such extreme pressure and temperature the rules of chemistry begin to change, and noble metals can be made to form compounds with other elements such as nitrogen, as in the case of iridium and platinum nitrides.

"We are still attempting to ascertain the electronic properties of these new materials," Goncharov said. "Generally speaking, these nitrides are likely to exhibit several properties that will make them attractive for technological applications. They are potentially important for the electronics industry as durable and reliable coatings, substrates, and conductors. One can also envisage optoelectronic devices, sensitive magnetometers and other metrological equipment that employ these materials."

Though other researchers have previously made platinum nitride, Goncharov’s group is the first to discover that for every platinum atom, there are two nitrogen atoms rather than just one. They are also the first to make iridium nitride, which they found has the same basic chemical formula as platinum nitride. In both cases, strong bonds that the dual nitrogen atoms make with the metal atom contribute to the nitrides’ hardness and durability. The noble metals, in turn, contribute unusual electronic properties.

So far, Goncharov’s group has only created small quantities of iridium and platinum nitrides in the lab. There is much work to do before these compounds can contribute to engineering and manufacturing the technology of tomorrow. But as Goncharov explains, "The present work is useful because it proves that these exotic nitrides exist, even if they were synthesized in a manner that is not practical on an industrial scale."

Dr. Alexander Goncharov | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>