Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are tougher electronic components on the way?

10.03.2006


Materials science gets a nitride boost



Like modern day alchemists, materials scientists often turn unassuming substances into desirable ones. But instead of working metal into gold, they create strange new compounds that could make the electronic components of the future smaller, faster, and more durable. Alexander Goncharov of the Carnegie Institution’s Geophysical Laboratory and colleagues* have used extreme temperatures and pressures to make two durable compounds called noble metal nitrides; they are the first to succeed in making one of them, and the first to accurately determine the chemical formula of the other. Both nitrides possess a diamond-like hardness, and some compositions might have very low, nearly superconductive electrical resistance--a blend that could prove quite valuable to industry.

The two nitrides--one containing iridium and another containing platinum--could eventually replace the titanium nitrides currently valued by the semiconductor industry as surface coatings because of their strength and durability. The researchers believe iridium and platinum nitrides might be even more durable. The group’s work is presented in the March 3, 2006, issue of the journal Science.


Like several other metals such as gold, silver, and palladium, platinum and iridium are noble metals. Such metals are resistant to corrosion and oxidation, and do not easily form compounds with other elements unless coaxed to do so under very high temperatures and pressures. Goncharov and his colleagues used a special tool called a diamond anvil cell to compress the samples to nearly half a million times the atmospheric pressure at sea level. Then they used a focused laser to heat the samples to over 3000 degrees Fahrenheit, or roughly the temperature of a steel mill blast furnace. Under such extreme pressure and temperature the rules of chemistry begin to change, and noble metals can be made to form compounds with other elements such as nitrogen, as in the case of iridium and platinum nitrides.

"We are still attempting to ascertain the electronic properties of these new materials," Goncharov said. "Generally speaking, these nitrides are likely to exhibit several properties that will make them attractive for technological applications. They are potentially important for the electronics industry as durable and reliable coatings, substrates, and conductors. One can also envisage optoelectronic devices, sensitive magnetometers and other metrological equipment that employ these materials."

Though other researchers have previously made platinum nitride, Goncharov’s group is the first to discover that for every platinum atom, there are two nitrogen atoms rather than just one. They are also the first to make iridium nitride, which they found has the same basic chemical formula as platinum nitride. In both cases, strong bonds that the dual nitrogen atoms make with the metal atom contribute to the nitrides’ hardness and durability. The noble metals, in turn, contribute unusual electronic properties.

So far, Goncharov’s group has only created small quantities of iridium and platinum nitrides in the lab. There is much work to do before these compounds can contribute to engineering and manufacturing the technology of tomorrow. But as Goncharov explains, "The present work is useful because it proves that these exotic nitrides exist, even if they were synthesized in a manner that is not practical on an industrial scale."

Dr. Alexander Goncharov | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>