Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are tougher electronic components on the way?

10.03.2006


Materials science gets a nitride boost



Like modern day alchemists, materials scientists often turn unassuming substances into desirable ones. But instead of working metal into gold, they create strange new compounds that could make the electronic components of the future smaller, faster, and more durable. Alexander Goncharov of the Carnegie Institution’s Geophysical Laboratory and colleagues* have used extreme temperatures and pressures to make two durable compounds called noble metal nitrides; they are the first to succeed in making one of them, and the first to accurately determine the chemical formula of the other. Both nitrides possess a diamond-like hardness, and some compositions might have very low, nearly superconductive electrical resistance--a blend that could prove quite valuable to industry.

The two nitrides--one containing iridium and another containing platinum--could eventually replace the titanium nitrides currently valued by the semiconductor industry as surface coatings because of their strength and durability. The researchers believe iridium and platinum nitrides might be even more durable. The group’s work is presented in the March 3, 2006, issue of the journal Science.


Like several other metals such as gold, silver, and palladium, platinum and iridium are noble metals. Such metals are resistant to corrosion and oxidation, and do not easily form compounds with other elements unless coaxed to do so under very high temperatures and pressures. Goncharov and his colleagues used a special tool called a diamond anvil cell to compress the samples to nearly half a million times the atmospheric pressure at sea level. Then they used a focused laser to heat the samples to over 3000 degrees Fahrenheit, or roughly the temperature of a steel mill blast furnace. Under such extreme pressure and temperature the rules of chemistry begin to change, and noble metals can be made to form compounds with other elements such as nitrogen, as in the case of iridium and platinum nitrides.

"We are still attempting to ascertain the electronic properties of these new materials," Goncharov said. "Generally speaking, these nitrides are likely to exhibit several properties that will make them attractive for technological applications. They are potentially important for the electronics industry as durable and reliable coatings, substrates, and conductors. One can also envisage optoelectronic devices, sensitive magnetometers and other metrological equipment that employ these materials."

Though other researchers have previously made platinum nitride, Goncharov’s group is the first to discover that for every platinum atom, there are two nitrogen atoms rather than just one. They are also the first to make iridium nitride, which they found has the same basic chemical formula as platinum nitride. In both cases, strong bonds that the dual nitrogen atoms make with the metal atom contribute to the nitrides’ hardness and durability. The noble metals, in turn, contribute unusual electronic properties.

So far, Goncharov’s group has only created small quantities of iridium and platinum nitrides in the lab. There is much work to do before these compounds can contribute to engineering and manufacturing the technology of tomorrow. But as Goncharov explains, "The present work is useful because it proves that these exotic nitrides exist, even if they were synthesized in a manner that is not practical on an industrial scale."

Dr. Alexander Goncharov | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>