Liquid crystals show promise in controlling embryonic stem cells

Liquid crystals, the same phase-shifting materials used to display information on cell phones, monitors and other electronic equipment, can also be used to report in real time on the differentiation of embryonic stem cells.

Differentiation is the process by which embryonic stem cells gradually turn into function-specific types of adult cells or so-called “cell lineages,” including skin, heart or brain cells.

The main challenge facing stem cell research is that of guiding differentiation along these well-defined, controlled lineages. Stem cells grown in the laboratory tend to differentiate in an uncontrolled manner, resulting in a mixture of cells of little medical use.

Now, University of Wisconsin-Madison researchers at the NSF-funded Materials Research Science and Engineering Center (MRSEC) have shown that by straining mechanically the cells as they grow, it is possible to reduce significantly and almost eliminate the uncontrolled differentiation of stem cells.

In an article in the March issue of Advanced Functional Materials, the team reports on a liquid crystal-based cell culture system that promises new ways of achieving real-time control over interactions between synthetic materials and human embryonic stem cells, including the possibility of straining embryonic stem cells as they grow.

“Stem cells tend to be smaller and have a slightly more compact shape than the differentiated cells,” says chemical and biological engineer Sean Palecek. “Differentiated cells appear to be much more spread and they appear to exert different levels of force on the matrix in which they are grown. That force can be read to a liquid crystal. Through simple changes of liquid crystal texture and color, our cell culture system is able to report, in real time, the cell interactions with the underlying support on which they are grown.”

Currently, researchers have several methods of monitoring cell differentiation. The easiest, says Palecek, is to just look at the cells and use cell morphology as a cue. A more accurate method uses molecular markers. Antibodies are placed against these markers to determine if they bind to the cell. That system, while more accurate, does not provide real time data and cells often have to be killed in order to analyze the markers.

“This newly devised cell culture system enables a new paradigm in stem cell research,” says chemical and biological engineer and MRSEC Director Juan de Pablo. “Ultimately, we hope to use liquid crystalline materials to transmit desired sets of physical and chemical cues to stem cells so as to control their differentiation, as well as report back specific responses of the cells or tissue.

“This research is also significant as an example of our unique effort to integrate advanced materials engineering and embryonic stem cell research, an effort that will help accelerate the rate at which the benefits of stem-cell based therapies are brought to society,” de Pablo adds.

Media Contact

Sean Palecek EurekAlert!

More Information:

http://www.engr.wisc.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors