Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find brain function most important to maths ability

07.03.2006


Scientists at UCL (University College London) have discovered the area of the brain linked to dyscalculia, a maths learning disability. The finding shows that there is a separate part of the brain used for counting that is essential for diagnosis and an understanding of why many people struggle with maths.



The paper, published online today in the Proceedings of the National Academy of Sciences (PNAS), explains that an area of the brain widely thought to be involved in processing number information generally, in fact has two very separate, specific functions. One function is responsible for counting ‘how many’ things are present and the other is responsible for knowing ‘how much’.

It is the discovery of the part responsible for counting or numerosity that is a major finding for Professor Brian Butterworth, who also published ‘The Mathematical Brain’ and is an authority on dyscalculia. He believes his finding is the key to diagnosis of dyscalculia.


Professor Butterworth, of the UCL Institute of Cognitive Neuroscience, said: “Now that we know where to look for the differences in brain activation between those who suffer from dyscalculia and those who don’t have the learning disorder, we will be able to come up with better diagnosis and insights.

“Some years ago, my colleague, Professor Uta Frith, found the part of the brain responsible for dyslexia. That discovery has led to a much better understanding of the condition, promising better diagnosis and treatment. We hope our discovery will lead to similar insights into dyscalculia – a similar learning disability but one that is still relatively unknown to the general public.”

There were two experiments that looked at brain activity in the intraparietal sulcus (IPS) – the area known to be involved in processing number information - using an fMRI scan. The first analysed brain activity when subjects were counting and the second looked at activity when they were assessing quantities.

Professor Butterworth said: “There are two ways of counting things. Imagine assessing how many men versus women are in a room by counting them at the door as they enter the room, let’s say three women and four men, and then try assessing the difference by looking at the room when everyone is present. Both methods of assessing the number of people should produce the same result. Instead of assessing numbers of men and women, subjects saw blue and green squares shown in a sequence or blue and green squares shown on screen at the same time. We found that both methods activated the same brain region.

“But when we showed subjects the colours merged and appearing either as a continuously changing square or as one cloudy coloured rectangle different results were produced and a different brain network lit up. This is because the brain was no longer able to try to count the objects. Instead it had to assess how much colour was in the block and guess whether there was more of one colour or another.

“By comparing these two types of stimulus, we identified the brain activity specific to estimating numbers of things. We think this is a brain network that underlies arithmetic and may be abnormal in dyscalculics.”

The project was supported by the European Union Research Training Network Grant and the Medical Research Council Centre Grant.

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>