Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space suit technology can protect workers from heatstroke

06.03.2006


The technology used in space suits to protect astronauts carrying out space walks in direct sunlight is now being used to develop protective clothing to safeguard firefighters and steel workers who often work in extremely hot and dangerous conditions.



"The existing protective clothing used while performing physically demanding work in hot conditions can, in many cases, hinder workers’ ability to remain cool," explains Stefano Carosio from the Italian company D’Appolonia, Project Manager for the Safe&Cool Project.

"Through this project, named Safe&Cool, we are developing a special protective material with a built-in cooling system based on the technology developed for the space suits used by astronauts on the International Space Station to prevent them from overheating when exposed to direct sunlight during space walks."


In Europe alone, the inability to shed excess heat and moisture through clothing results each year in over 1500 heatstrokes. These can be fatal unless medical help is at hand. Even more common, but less serious, are cases of heat stress. This affects an estimated 50 000 workers each year and increases the risk of injury at work due to loss of concentration. Even at a temperature 21º C workers wearing impermeable protective clothing can suffer heat stress when carrying out hard physical work.

"Our objective, through the Safe&Cool project, is to develop a higher quality thermal and moisture management layer for protective clothing that complies with EU directives," adds Agnieszka Kurchewska, from the Polish Institute for Labour Protection, National Research Institute (CIOP-PIB).

"If used for protective clothing this new material will make the working environment safer and better through reducing the risk of heat stress and heatstrokes for those operating in what can be dangerous and often stressful jobs."

Conceived within ESA’s Technology Transfer Programme, the Safe&Cool system is developed by a consortium of six small and medium-sized enterprises (SMEs) from Italy, Belgium and Poland in cooperation with Italian Grado Zero Espace and CIOP-PIB, and coordinated by D’Appolonia.

The cooling apparatus used in the project has been developed by Grado Zero Espace and has already been used successfully in clothing for Formula-1 McLaren mechanics and the Spanish Moto-GP driver, Sete Gibernau. Following a preliminary feasibility and concept validation study supported by ESA’s Technology Transfer Programme, the project received financial support from the EC under its CRAFT initiative to reach a pre-competitive stage of development.

Combining three advanced technologies

The Safe&Cool system makes use of three special technologies. Firstly a special 3D-textile structure is used in the thermal and moisture management layer to replace the interliner and moisture barrier of classical three-layered protective clothing.

The materials used in the special 3D-textile structure are hydrophobic thermal comfort fibres to avoid a wet feeling when in contact with the body, combined with hydrophilic fibres to create suction channels to transport moisture away from the skin.

The second technology is the cooling apparatus derived from astronauts’ suits. This enables liquid to be circulated through tubing inserted in cavities in the 3D-textile structure, creating ’blood vessels’ for heat removal. A water-binding polymer is the third technology and this will be added either as a coating or in the form of a powder dispersed inside the fabrics.

The polymer will absorb and bind excess moisture migrating through the semi-permeable membrane to maintain the temperature below a threshold controlled by the cooling apparatus. If there is a sudden temperature increase, arising from a burn flashover for example, and the cooling system cannot remove heat fast enough from the body, the polymer will release the liquid accumulated, reproducing the human natural sweating process through evaporative cooling.

"Producing protective suits based on the combination of these three technologies will increase the safety of those carrying out tasks in dangerous environments," says Pierre Brisson, head of ESA’s Technology Transfer and Promotion Office. "This is another good example of how advanced technologies and concepts already developed for space - in this case to protect our astronauts - can provide innovative and advantageous solutions for people on Earth."

Although the immediate application for the Safe&Cool innovative thermal management system is to create clothing to protect those working in harsh environments, such as firefighters and steel workers, several other promising applications have been identified by the consortium, including use in sportswear and transportation. The Polish company TAPS, which is part of the consortium, is already testing the industrial viability of inserting the system as heating or conditioning elements inside passenger seats in cars and public transport.

Pierre Brisson | alfa
Further information:
http://www.esa.int/SPECIALS/Technology_Transfer/SEMVTQMVGJE_0.html

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>