Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space suit technology can protect workers from heatstroke

06.03.2006


The technology used in space suits to protect astronauts carrying out space walks in direct sunlight is now being used to develop protective clothing to safeguard firefighters and steel workers who often work in extremely hot and dangerous conditions.



"The existing protective clothing used while performing physically demanding work in hot conditions can, in many cases, hinder workers’ ability to remain cool," explains Stefano Carosio from the Italian company D’Appolonia, Project Manager for the Safe&Cool Project.

"Through this project, named Safe&Cool, we are developing a special protective material with a built-in cooling system based on the technology developed for the space suits used by astronauts on the International Space Station to prevent them from overheating when exposed to direct sunlight during space walks."


In Europe alone, the inability to shed excess heat and moisture through clothing results each year in over 1500 heatstrokes. These can be fatal unless medical help is at hand. Even more common, but less serious, are cases of heat stress. This affects an estimated 50 000 workers each year and increases the risk of injury at work due to loss of concentration. Even at a temperature 21º C workers wearing impermeable protective clothing can suffer heat stress when carrying out hard physical work.

"Our objective, through the Safe&Cool project, is to develop a higher quality thermal and moisture management layer for protective clothing that complies with EU directives," adds Agnieszka Kurchewska, from the Polish Institute for Labour Protection, National Research Institute (CIOP-PIB).

"If used for protective clothing this new material will make the working environment safer and better through reducing the risk of heat stress and heatstrokes for those operating in what can be dangerous and often stressful jobs."

Conceived within ESA’s Technology Transfer Programme, the Safe&Cool system is developed by a consortium of six small and medium-sized enterprises (SMEs) from Italy, Belgium and Poland in cooperation with Italian Grado Zero Espace and CIOP-PIB, and coordinated by D’Appolonia.

The cooling apparatus used in the project has been developed by Grado Zero Espace and has already been used successfully in clothing for Formula-1 McLaren mechanics and the Spanish Moto-GP driver, Sete Gibernau. Following a preliminary feasibility and concept validation study supported by ESA’s Technology Transfer Programme, the project received financial support from the EC under its CRAFT initiative to reach a pre-competitive stage of development.

Combining three advanced technologies

The Safe&Cool system makes use of three special technologies. Firstly a special 3D-textile structure is used in the thermal and moisture management layer to replace the interliner and moisture barrier of classical three-layered protective clothing.

The materials used in the special 3D-textile structure are hydrophobic thermal comfort fibres to avoid a wet feeling when in contact with the body, combined with hydrophilic fibres to create suction channels to transport moisture away from the skin.

The second technology is the cooling apparatus derived from astronauts’ suits. This enables liquid to be circulated through tubing inserted in cavities in the 3D-textile structure, creating ’blood vessels’ for heat removal. A water-binding polymer is the third technology and this will be added either as a coating or in the form of a powder dispersed inside the fabrics.

The polymer will absorb and bind excess moisture migrating through the semi-permeable membrane to maintain the temperature below a threshold controlled by the cooling apparatus. If there is a sudden temperature increase, arising from a burn flashover for example, and the cooling system cannot remove heat fast enough from the body, the polymer will release the liquid accumulated, reproducing the human natural sweating process through evaporative cooling.

"Producing protective suits based on the combination of these three technologies will increase the safety of those carrying out tasks in dangerous environments," says Pierre Brisson, head of ESA’s Technology Transfer and Promotion Office. "This is another good example of how advanced technologies and concepts already developed for space - in this case to protect our astronauts - can provide innovative and advantageous solutions for people on Earth."

Although the immediate application for the Safe&Cool innovative thermal management system is to create clothing to protect those working in harsh environments, such as firefighters and steel workers, several other promising applications have been identified by the consortium, including use in sportswear and transportation. The Polish company TAPS, which is part of the consortium, is already testing the industrial viability of inserting the system as heating or conditioning elements inside passenger seats in cars and public transport.

Pierre Brisson | alfa
Further information:
http://www.esa.int/SPECIALS/Technology_Transfer/SEMVTQMVGJE_0.html

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>