Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Nano skins’ show promise as flexible electronic devices

02.03.2006


A team of researchers has developed a new process to make flexible, conducting ’nano skins’ for a variety of applications, from electronic paper to sensors for detecting chemical and biological agents. The materials, which are described in the March issue of the journal Nano Letters, combine the strength and conductivity of carbon nanotubes with the flexibility of traditional polymers.


A flexible, conducting "nano skin" with organized arrays of nanotubes embedded throughout. Credit: Rensselaer/Yung Joon Jung



"Researchers have long been interested in making composites of nanotubes and polymers, but it can be difficult to engineer the interfaces between the two materials," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute. "We have found a way to get arrays of nanotubes into a soft polymer matrix without disturbing the shape, size, or alignment of the nanotubes."

Nanotube arrays typically don’t maintain their shape when transferred because they are held together by weak forces. But the team has developed a new procedure that allows them to grow an array of nanotubes on a separate platform and then fill the array with a soft polymer. When the polymer hardens, it is essentially peeled back from the platform, leaving a flexible skin with organized arrays of nanotubes embedded throughout.


The skins can be bent, flexed, and rolled up like a scroll, all while maintaining their ability to conduct electricity, which makes them ideal materials for electronic paper and other flexible electronics, according to Ajayan.

"The general concept (growing nanotubes on a stiff platform in various organizations, and then transferring them to a flexible platform without losing this organization) could have many other applications, all the way from adhesive structures and Velcro-like materials to nanotube interconnects for electronics," says Swastik Kar, a postdoctoral researcher in materials science and engineering at Rensselaer and lead author of the paper, along with Yung Joon Jung, assistant professor of mechanical and industrial engineering at Northeastern University and a recent doctoral student in Ajayan’s Rensselaer lab.

For example, with researchers at the University of Akron, Ajayan is using a similar process to mimic the agile gecko, with its uncanny ability to run up walls and across ceilings. The team recently reported a process for creating artificial gecko feet with 200 times the sticking power of the real thing, using nanotubes to imitate the thousands of microscopic hairs on a gecko’s footpad. Ajayan’s team is also working with Ali Dhinojwala, associate professor of polymer science at Akron, to develop a range of products with nanotubes and flexible substrates.

The researchers also envision using the process to build miniature pressure sensors and gas detectors. "There are a lot of possibilities if you have an easy way to transfer the nanotubes to any platform, and that is what we have developed," Ajayan says.

The team has shown that the flexible materials demonstrate an extremely useful physical property called "field emission." When a voltage is applied to certain materials, electrons are pulled out from the surface, which can be used to produce high-resolution electronic displays. "Nanotubes are very good field emitters because they have a low threshold for emission and they produce high currents," Kar says. "But when you lay nanotubes very close to each other, each tube tends to shield its neighbor from the electric field."

This effect has limited the development of field emission devices based on densely packed, aligned nanotubes, but it seems to go away when the nanotubes are embedded in a polymer, according to Kar. Tests showed that the team’s "nano skins" are excellent field emitters when compared to some of the best values obtained by other research groups.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>