Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Nano skins’ show promise as flexible electronic devices

02.03.2006


A team of researchers has developed a new process to make flexible, conducting ’nano skins’ for a variety of applications, from electronic paper to sensors for detecting chemical and biological agents. The materials, which are described in the March issue of the journal Nano Letters, combine the strength and conductivity of carbon nanotubes with the flexibility of traditional polymers.


A flexible, conducting "nano skin" with organized arrays of nanotubes embedded throughout. Credit: Rensselaer/Yung Joon Jung



"Researchers have long been interested in making composites of nanotubes and polymers, but it can be difficult to engineer the interfaces between the two materials," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute. "We have found a way to get arrays of nanotubes into a soft polymer matrix without disturbing the shape, size, or alignment of the nanotubes."

Nanotube arrays typically don’t maintain their shape when transferred because they are held together by weak forces. But the team has developed a new procedure that allows them to grow an array of nanotubes on a separate platform and then fill the array with a soft polymer. When the polymer hardens, it is essentially peeled back from the platform, leaving a flexible skin with organized arrays of nanotubes embedded throughout.


The skins can be bent, flexed, and rolled up like a scroll, all while maintaining their ability to conduct electricity, which makes them ideal materials for electronic paper and other flexible electronics, according to Ajayan.

"The general concept (growing nanotubes on a stiff platform in various organizations, and then transferring them to a flexible platform without losing this organization) could have many other applications, all the way from adhesive structures and Velcro-like materials to nanotube interconnects for electronics," says Swastik Kar, a postdoctoral researcher in materials science and engineering at Rensselaer and lead author of the paper, along with Yung Joon Jung, assistant professor of mechanical and industrial engineering at Northeastern University and a recent doctoral student in Ajayan’s Rensselaer lab.

For example, with researchers at the University of Akron, Ajayan is using a similar process to mimic the agile gecko, with its uncanny ability to run up walls and across ceilings. The team recently reported a process for creating artificial gecko feet with 200 times the sticking power of the real thing, using nanotubes to imitate the thousands of microscopic hairs on a gecko’s footpad. Ajayan’s team is also working with Ali Dhinojwala, associate professor of polymer science at Akron, to develop a range of products with nanotubes and flexible substrates.

The researchers also envision using the process to build miniature pressure sensors and gas detectors. "There are a lot of possibilities if you have an easy way to transfer the nanotubes to any platform, and that is what we have developed," Ajayan says.

The team has shown that the flexible materials demonstrate an extremely useful physical property called "field emission." When a voltage is applied to certain materials, electrons are pulled out from the surface, which can be used to produce high-resolution electronic displays. "Nanotubes are very good field emitters because they have a low threshold for emission and they produce high currents," Kar says. "But when you lay nanotubes very close to each other, each tube tends to shield its neighbor from the electric field."

This effect has limited the development of field emission devices based on densely packed, aligned nanotubes, but it seems to go away when the nanotubes are embedded in a polymer, according to Kar. Tests showed that the team’s "nano skins" are excellent field emitters when compared to some of the best values obtained by other research groups.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>