Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT thinks small to find safer metals

22.02.2006


MIT researchers have devised a new method for shrinking the size of crystals to make safer metal alloys. The new materials could replace metal coatings such as chromium, which is dangerous for factory workers to produce.

The method, developed by Associate Professor Christopher Schuh and graduate student Andrew Detor, both of the Department of Materials Science and Engineering, involves making the crystals within an alloy (a combination of two or more metals) smaller and thus harder.

For the chromium replacement, the two made crystals of nickel and tungsten small enough that the resulting alloy is as hard as chromium. The trick is a new twist on electroplating that involves manipulating -- on the nanoscale, or billionths of a meter -- how the nickel and tungsten atoms are laid down as they are plated onto another metal.



While so-called hard chromium is used to coat industrial parts and decorative items such as automobile bumpers, the coating process uses a form of chromium called hexavalent chromium that has been linked to cancer and other adverse health effects if workers inhale it. A steel ring, for example, is coated using a bath of hexavalent chromium that gives off harmful fumes.

While exhaust hoods are used to take away much of the fumes, the federal government currently is considering tougher safety standards for workers exposed to the baths. That has led industrial companies to look for metals that will not give off the harmful fumes. Schuh says the new alloy is one such safer alternative.

"The ability to control the structure of a metal to nearly the atomic scale is new and enables us to make the alloy very hard," Schuh said.

He compared the method to making a wall out of stones and mortar. Using large stones doesn’t require much mortar, but smaller stones require more mortar, which makes for a stronger stone wall.

In the new chromium replacement, each microscopic piece of nickel is surrounded by even tinier bits of tungsten. The researchers control how the tungsten fills in the spaces between the pieces of nickel, thus creating a tighter and stronger crystal structure than metals and alloys with larger crystals.

In addition to producing safer alternative metal coatings, the method also allows for manipulating the structure of metals to improve their resistance to cracking, corrosion and other wear and tear, Schuh said. Schuh already has tested steel coated with chromium and his new alloy, and the alloy has held up better against some types of corrosion.

Schuh said that while replacing chromium as a metal coating is likely to be the initial application of this method, other nanostructure alloys could be used to replace other metal coatings in the future.

Hexavalent chromium, the material Schuh hopes to replace, is used in just about every major heavy industry worldwide. It has been under scrutiny since the early 1970s and was the subject of the movie, "Erin Brockovich." New environmental standards on hexavalent chromium expected soon from the Occupational Safety and Health Administration (OSHA) could be 50 times more stringent than current standards.

More than 25,000 U.S. workers are exposed to hexavalent chromium each year in the chrome-plating process alone, according to OSHA figures. And that’s only a fraction of the total number exposed to the carcinogen.

"Other countries also are introducing significant new controls, so this is a problem that is not going to go away," said Schuh. He said he expects industries using hexavalent chromium to undergo major structural changes to meet the new standards, including seeking alternative materials for plating.

Schuh has filed for two patents on the technology. An article on the new method is to appear this summer in the Materials Research Society Proceedings.

Schuh, along with Alan Lund, a former researcher at MIT, also is a co-founder of a company called Xtalic Corp. of Medford, Mass., which will license the intellectual property from MIT. It aims to commercialize the metal-coating technology based on nanostructure alloys.

The U.S. Army Research Office funded the work.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>