Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT thinks small to find safer metals

22.02.2006


MIT researchers have devised a new method for shrinking the size of crystals to make safer metal alloys. The new materials could replace metal coatings such as chromium, which is dangerous for factory workers to produce.

The method, developed by Associate Professor Christopher Schuh and graduate student Andrew Detor, both of the Department of Materials Science and Engineering, involves making the crystals within an alloy (a combination of two or more metals) smaller and thus harder.

For the chromium replacement, the two made crystals of nickel and tungsten small enough that the resulting alloy is as hard as chromium. The trick is a new twist on electroplating that involves manipulating -- on the nanoscale, or billionths of a meter -- how the nickel and tungsten atoms are laid down as they are plated onto another metal.



While so-called hard chromium is used to coat industrial parts and decorative items such as automobile bumpers, the coating process uses a form of chromium called hexavalent chromium that has been linked to cancer and other adverse health effects if workers inhale it. A steel ring, for example, is coated using a bath of hexavalent chromium that gives off harmful fumes.

While exhaust hoods are used to take away much of the fumes, the federal government currently is considering tougher safety standards for workers exposed to the baths. That has led industrial companies to look for metals that will not give off the harmful fumes. Schuh says the new alloy is one such safer alternative.

"The ability to control the structure of a metal to nearly the atomic scale is new and enables us to make the alloy very hard," Schuh said.

He compared the method to making a wall out of stones and mortar. Using large stones doesn’t require much mortar, but smaller stones require more mortar, which makes for a stronger stone wall.

In the new chromium replacement, each microscopic piece of nickel is surrounded by even tinier bits of tungsten. The researchers control how the tungsten fills in the spaces between the pieces of nickel, thus creating a tighter and stronger crystal structure than metals and alloys with larger crystals.

In addition to producing safer alternative metal coatings, the method also allows for manipulating the structure of metals to improve their resistance to cracking, corrosion and other wear and tear, Schuh said. Schuh already has tested steel coated with chromium and his new alloy, and the alloy has held up better against some types of corrosion.

Schuh said that while replacing chromium as a metal coating is likely to be the initial application of this method, other nanostructure alloys could be used to replace other metal coatings in the future.

Hexavalent chromium, the material Schuh hopes to replace, is used in just about every major heavy industry worldwide. It has been under scrutiny since the early 1970s and was the subject of the movie, "Erin Brockovich." New environmental standards on hexavalent chromium expected soon from the Occupational Safety and Health Administration (OSHA) could be 50 times more stringent than current standards.

More than 25,000 U.S. workers are exposed to hexavalent chromium each year in the chrome-plating process alone, according to OSHA figures. And that’s only a fraction of the total number exposed to the carcinogen.

"Other countries also are introducing significant new controls, so this is a problem that is not going to go away," said Schuh. He said he expects industries using hexavalent chromium to undergo major structural changes to meet the new standards, including seeking alternative materials for plating.

Schuh has filed for two patents on the technology. An article on the new method is to appear this summer in the Materials Research Society Proceedings.

Schuh, along with Alan Lund, a former researcher at MIT, also is a co-founder of a company called Xtalic Corp. of Medford, Mass., which will license the intellectual property from MIT. It aims to commercialize the metal-coating technology based on nanostructure alloys.

The U.S. Army Research Office funded the work.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>