Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nanoworld of corrosion

10.02.2006


The effect of corrosion has an impact on about 3% of the world’s Gross Domestic Product. From a positive point of view, however, chemical attack of metal surfaces may result into surface nano-structures with very interesting technological applications such as catalysts and sensors. Therefore, a better understanding of corrosion processes is required to both prevent it and make the most of it. Scientists from Germany and the European Synchrotron Radiation Facility (ESRF) have highlighted a self-organization process on the surface of a metal alloy, which is of crucial importance in determining the response to corrosion of this material. In fact, this study, providing a structural description with atomic-scale resolution thanks to the X-rays from the ESRF synchrotron, unvealed the chemical composition and structure of a protective surface layer which hinders further corrosion. The authors publish their results in Nature this week.



Researchers from Max Planck Institute, the University of Ulm (Germany), and the ESRF used the European synchrotron light source to reproduce in situ the onset of the corrosive process in a gold-copper alloy. Gold is a very noble metal, which doesn’t corrode, whilst copper is less noble and, thus, more prone to chemical attack. At the first moments of corrosion, the copper-gold alloy develops a mechanism to protect itself with an extremely thin gold-rich layer. This layer has an unexpected crystalline and well-ordered structure. When the corrosion process proceeds, this alloy layer transforms into gold nano-islands of 20 to 1.5 nanometres. These islands eventually develop into a porous gold metal layer, which may have technological applications: "Understanding and controlling the formation of the first layer and the nano-islands may help to produce nano-materials with specific properties", explains Jorg Zegenhagen, one of the authors of the paper.

In order to carry out these experiments, researchers placed the samples in an electrochemical cell filled with sulphuric acid, in which voltage can be applied, and monitored the early corrosion process. "We found a vast amount of detail on structural evolution and chemical information by combining detailed 3D analysis of the structure with additional anomalous scattering experiments before more severe corrosion happened", explains Frank Renner, first author of the paper.


These new insights can be applied to a variety of different alloys used in corrosive environments and to materials that can exploit such degradation to form porous metals of technological interest. Although understanding the process of corrosion in gold-copper alloy has only become possible now, the process itself is many centuries old. Ancient Incas metal-smiths stretched their supplies of precious gold by mixing it with copper, and then surrounding the alloy with salty substances. This created an acidic environment that dissolved the copper from the top layer, leaving a gold-rich surface ready for polishing.

Montserrat Capellas | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>