Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Adding nanotubes makes ordinary materials absorb vibration


New composites could remove buzz from speakers, sting from golf clubs

A new study suggests that integrating nanotubes into traditional materials dramatically improves their ability to reduce vibration, especially at high temperatures. The findings could pave the way for a new class of materials with a multitude of applications, from high-performance parts for spacecraft and automobile engines, to golf clubs that don’t sting and stereo speakers that don’t buzz.

The materials, developed by researchers at Rensselaer Polytechnic Institute, are described in the Feb. 8 issue of the journal Nano Letters.

Nanocomposites don’t suffer from the same weight and volume penalties as current polymeric damping materials, but the new findings point to another important advantage, according to Nikhil Koratkar, associate professor of mechanical, aerospace, and nuclear engineering at Rensselaer and lead author of the paper. "Traditional damping polymers perform poorly at elevated temperatures," he says. "Our new materials provide excellent damping at high temperatures, suggesting that these nanocomposites show great potential for a variety of applications in aircraft, spacecraft, satellites, automobiles, and even sensors for missile systems -- basically any structure that is exposed to vibration."

Though much of the research focus has been on improving the strength and stiffness of nanomaterials, Koratkar and his coworkers have directed their attention to another important property: damping, or the ability of a material to dissipate energy. They have found that dispersing nanotubes throughout traditional materials creates new composites with vastly improved damping capabilities. And they have also shown for the first time that these damping properties are enhanced as the temperature increases.

Carbon nanotubes are made from graphite-like carbon, where the atoms are arranged like a rolled-up tube of chicken wire. They have enticed researchers since their discovery in 1991, offering an impressive combination of high strength and low weight, but few commercial applications have resulted in the intervening years, according to Koratkar.

The new materials could be extremely useful for any kind of space application, because temperatures swing wildly from very hot in the day to very cold at night, Koratkar notes. And he expects to use them in the diaphragms of loud speakers to help improve sound quality by reducing the buzz associated with high bass levels.

The sporting goods market is also an especially promising outlet, particularly for golf clubs and tennis racquets. "Manufacturers want tennis racquets and golf club shafts to be light and stiff, but without the annoying sting that comes from a bad shot," Koratkar says.

Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a world-renowned expert in fabricating nanotube materials, collaborated with Koratkar on this project, and two other Rensselaer researchers were involved with the research: Jonghwan Suhr, a post-doctoral researcher in mechanical, aerospace, and nuclear engineering; and Wei Zhang, a graduate student in aeronautical engineering.

Jason Gorss | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>