Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding nanotubes makes ordinary materials absorb vibration

09.02.2006


New composites could remove buzz from speakers, sting from golf clubs

A new study suggests that integrating nanotubes into traditional materials dramatically improves their ability to reduce vibration, especially at high temperatures. The findings could pave the way for a new class of materials with a multitude of applications, from high-performance parts for spacecraft and automobile engines, to golf clubs that don’t sting and stereo speakers that don’t buzz.

The materials, developed by researchers at Rensselaer Polytechnic Institute, are described in the Feb. 8 issue of the journal Nano Letters.



Nanocomposites don’t suffer from the same weight and volume penalties as current polymeric damping materials, but the new findings point to another important advantage, according to Nikhil Koratkar, associate professor of mechanical, aerospace, and nuclear engineering at Rensselaer and lead author of the paper. "Traditional damping polymers perform poorly at elevated temperatures," he says. "Our new materials provide excellent damping at high temperatures, suggesting that these nanocomposites show great potential for a variety of applications in aircraft, spacecraft, satellites, automobiles, and even sensors for missile systems -- basically any structure that is exposed to vibration."

Though much of the research focus has been on improving the strength and stiffness of nanomaterials, Koratkar and his coworkers have directed their attention to another important property: damping, or the ability of a material to dissipate energy. They have found that dispersing nanotubes throughout traditional materials creates new composites with vastly improved damping capabilities. And they have also shown for the first time that these damping properties are enhanced as the temperature increases.

Carbon nanotubes are made from graphite-like carbon, where the atoms are arranged like a rolled-up tube of chicken wire. They have enticed researchers since their discovery in 1991, offering an impressive combination of high strength and low weight, but few commercial applications have resulted in the intervening years, according to Koratkar.

The new materials could be extremely useful for any kind of space application, because temperatures swing wildly from very hot in the day to very cold at night, Koratkar notes. And he expects to use them in the diaphragms of loud speakers to help improve sound quality by reducing the buzz associated with high bass levels.

The sporting goods market is also an especially promising outlet, particularly for golf clubs and tennis racquets. "Manufacturers want tennis racquets and golf club shafts to be light and stiff, but without the annoying sting that comes from a bad shot," Koratkar says.

Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a world-renowned expert in fabricating nanotube materials, collaborated with Koratkar on this project, and two other Rensselaer researchers were involved with the research: Jonghwan Suhr, a post-doctoral researcher in mechanical, aerospace, and nuclear engineering; and Wei Zhang, a graduate student in aeronautical engineering.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>