Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bathroom that cleans itself

08.02.2006


Cleaning bathrooms may become a thing of the past with new coatings that will do the job for you.



Researchers at the University of New South Wales are developing new coatings they hope will be used for self-cleaning surfaces in hospitals and the home.

Led by Professor Rose Amal and Professor Michael Brungs of the ARC Centre for Functional Nanomaterials, a research team is studying tiny particles of titanium dioxide currently used on outdoor surfaces such as self-cleaning windows.


The particles work by absorbing ultraviolet light below a certain wavelength, exciting electrons and giving the particles an oxidising quality stronger than any commercial bleach.

These nanoparticles then kill microbes and break down organic compounds. And because surfaces coated with titanium dioxide have another property called ’superhydrophilicity’ -- meaning droplets do not form -- water runs straight off the surface, washing as it goes.

Presently, titanium dioxide can only be activated by the UVA present in sunlight. But the UNSW team is working on ways to activate titanium dioxide with indoor light.

The team is modifying titanium dioxide nanoparticles with other elements such as iron and nitrogen so they can absorb light at longer wavelengths.

Lab trials show that glass coated with the new nanoparticles can be activated by visible light from a lamp to kill Escherchia coli.

"If you’ve got this on tiles or shower screens you don’t need so many chemical agents," says Professor Amal.

So far the team has been working at laboratory scale. "It’s probably a year before we can talk to industry and test outside the lab," says Professor Amal.

Professor Rose Amal: + 61-2 9385 4361, r.amal@unsw.edu.au
Professor Michael Brungs:+ 61-2-9385 4306, m.brungs@unsw.edu.au

Mary O’Malley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>