Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking news

06.02.2006


Could engineers have known ahead of time exactly how much pressure the levees protecting New Orleans could withstand before giving way? Is it possible to predict when and under what conditions material wear and tear will become critical, causing planes to crash or bridges to collapse? A study by Weizmann Institute scientists takes a new and original approach to the study of how materials fracture and split apart.



When force is applied to a material (say, a rock hitting a pane of glass), a crack starts to form in the interior layers of that material. In the glass, for example, the force of the striking rock will cause the fracture to progress through the material with gradually increasing speed until the structure of the glass splits apart. The path the forming crack follows and the direction it takes are influenced by the nature of the force and by its shape. As cracking continues, microscopic ridges form along the advancing front of the crack and the fracture path repeatedly branches, creating a lightning bolt or herringbone pattern.

Physicists attempting to find a formula for the dynamics of cracking, to allow them to predict how a crack will advance in a given material, have faced a serious obstacle. The difficulty lies in pinning down, objectively, the fundamental directionality of the cracking process: From any given angle of observation or starting point of measurement, the crack will look different and yield different results from any other. Scientists all over the world have experimented with cracking but, until now, no one has successfully managed to come up with a method for analyzing the progression of a forming crack.


Prof. Itamar Procaccia and research students Eran Bouchbinder and Shani Sela of the Chemical Physics Department set out to find a way of analyzing data from experiments in cracking that would avoid the direction problem. First, they divided the cracks’ ridged surfaces up into mathematically-determined sectors. For each sector they were able to measure and evaluate different aspects of the crack’s formation and to assign it simple directional properties. After some complex data analysis of the combined information from all the sectors, the team found their method allowed them to gain a deeper understanding of the process of cracking, no matter which direction the measurements started from. The team then successfully applied the method to a variety of materials – plastic, glass and metal.

From the concrete in dams and buildings, to the metal alloys and composites in airplane wings, to the glass in windshields, many of the materials we depend on daily are subject to cracking. The team’s method will give engineers and materials scientists new tools to understand how all of these basic materials act under different stresses, to predict how and when microscopic or internal, unseen fractures might turn life-threatening, or to improve these materials to make them more resistant to cracks’ formation or spread.

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann-usa.org/site/PageServer?pagename=index

More articles from Materials Sciences:

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

nachricht Sustainable ceramics without a kiln
28.02.2017 | ETH Zurich

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>