Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking news

06.02.2006


Could engineers have known ahead of time exactly how much pressure the levees protecting New Orleans could withstand before giving way? Is it possible to predict when and under what conditions material wear and tear will become critical, causing planes to crash or bridges to collapse? A study by Weizmann Institute scientists takes a new and original approach to the study of how materials fracture and split apart.



When force is applied to a material (say, a rock hitting a pane of glass), a crack starts to form in the interior layers of that material. In the glass, for example, the force of the striking rock will cause the fracture to progress through the material with gradually increasing speed until the structure of the glass splits apart. The path the forming crack follows and the direction it takes are influenced by the nature of the force and by its shape. As cracking continues, microscopic ridges form along the advancing front of the crack and the fracture path repeatedly branches, creating a lightning bolt or herringbone pattern.

Physicists attempting to find a formula for the dynamics of cracking, to allow them to predict how a crack will advance in a given material, have faced a serious obstacle. The difficulty lies in pinning down, objectively, the fundamental directionality of the cracking process: From any given angle of observation or starting point of measurement, the crack will look different and yield different results from any other. Scientists all over the world have experimented with cracking but, until now, no one has successfully managed to come up with a method for analyzing the progression of a forming crack.


Prof. Itamar Procaccia and research students Eran Bouchbinder and Shani Sela of the Chemical Physics Department set out to find a way of analyzing data from experiments in cracking that would avoid the direction problem. First, they divided the cracks’ ridged surfaces up into mathematically-determined sectors. For each sector they were able to measure and evaluate different aspects of the crack’s formation and to assign it simple directional properties. After some complex data analysis of the combined information from all the sectors, the team found their method allowed them to gain a deeper understanding of the process of cracking, no matter which direction the measurements started from. The team then successfully applied the method to a variety of materials – plastic, glass and metal.

From the concrete in dams and buildings, to the metal alloys and composites in airplane wings, to the glass in windshields, many of the materials we depend on daily are subject to cracking. The team’s method will give engineers and materials scientists new tools to understand how all of these basic materials act under different stresses, to predict how and when microscopic or internal, unseen fractures might turn life-threatening, or to improve these materials to make them more resistant to cracks’ formation or spread.

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann-usa.org/site/PageServer?pagename=index

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>