Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breaking news


Could engineers have known ahead of time exactly how much pressure the levees protecting New Orleans could withstand before giving way? Is it possible to predict when and under what conditions material wear and tear will become critical, causing planes to crash or bridges to collapse? A study by Weizmann Institute scientists takes a new and original approach to the study of how materials fracture and split apart.

When force is applied to a material (say, a rock hitting a pane of glass), a crack starts to form in the interior layers of that material. In the glass, for example, the force of the striking rock will cause the fracture to progress through the material with gradually increasing speed until the structure of the glass splits apart. The path the forming crack follows and the direction it takes are influenced by the nature of the force and by its shape. As cracking continues, microscopic ridges form along the advancing front of the crack and the fracture path repeatedly branches, creating a lightning bolt or herringbone pattern.

Physicists attempting to find a formula for the dynamics of cracking, to allow them to predict how a crack will advance in a given material, have faced a serious obstacle. The difficulty lies in pinning down, objectively, the fundamental directionality of the cracking process: From any given angle of observation or starting point of measurement, the crack will look different and yield different results from any other. Scientists all over the world have experimented with cracking but, until now, no one has successfully managed to come up with a method for analyzing the progression of a forming crack.

Prof. Itamar Procaccia and research students Eran Bouchbinder and Shani Sela of the Chemical Physics Department set out to find a way of analyzing data from experiments in cracking that would avoid the direction problem. First, they divided the cracks’ ridged surfaces up into mathematically-determined sectors. For each sector they were able to measure and evaluate different aspects of the crack’s formation and to assign it simple directional properties. After some complex data analysis of the combined information from all the sectors, the team found their method allowed them to gain a deeper understanding of the process of cracking, no matter which direction the measurements started from. The team then successfully applied the method to a variety of materials – plastic, glass and metal.

From the concrete in dams and buildings, to the metal alloys and composites in airplane wings, to the glass in windshields, many of the materials we depend on daily are subject to cracking. The team’s method will give engineers and materials scientists new tools to understand how all of these basic materials act under different stresses, to predict how and when microscopic or internal, unseen fractures might turn life-threatening, or to improve these materials to make them more resistant to cracks’ formation or spread.

Elizabeth McCrocklin | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>