Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New material brings hydrogen fuel, cheaper petrochemicals closer to reality


A rubbery material that can purify hydrogen efficiently in its most usable form for fuel cells and oil refining has been developed by a chemical engineering group at The University of Texas at Austin.

In the Feb. 3 edition of Science, Dr. Benny Freeman details how his laboratory designed the membrane material and tested its ability, with colleagues at Research Triangle Institute (RTI) in Research Triangle Park, N.C., to successfully separate hydrogen from carbon dioxide and other contaminant gases.

This member of a new family of membrane materials with superior gas-separating ability could lower the costs of purifying hydrogen for hydrogen-fueled vehicles. Hydrogen fuel cells are considered a leading alternative energy for running cars and other devices in the future. The membrane material could also replace an expensive step in current petrochemical processing, or reduce how much energy the step requires. The membrane was tested under conditions that mimic those routinely used by the petrochemical industry to refine petroleum components (crude oil and natural gas) for use.

"A significant amount of the hydrogen in use today goes into the refining industry to refine crude oil to produce gasoline or other products, so this membrane could lower refining costs," said Freeman, the Kenneth A. Kobe Professor in Chemical Engineering.

The membrane differs structurally and functionally from previous options, with a key advantage being its ability to permit hydrogen to remain compressed at high pressure. A compressed form of the light-weight gas is needed to process fossil fuels and for it to serve as a readily replaceable fuel for fuel cells.

Freeman and graduate student Haiqing Lin designed the membrane material in Freeman’s laboratory at the university’s Center for Energy and Environmental Resources.

The engineers and RTI collaborators Lora Toy and Raghubir Gupta tested flat, disk-shaped versions of the material for its ability to separate different mixtures of hydrogen and carbon dioxide gases at different temperatures. The researchers used the three common temperatures for industrial hydrogen purification: 95 degrees, 50 degrees and minus 4 degrees Fahrenheit.

The new membrane not only separated these two gases better than previous membranes, but did so when additional components such as hydrogen sulfide and water vapor were present as occurs in industrial settings. The membrane worked so well that it was 40 times more permeable to (better at separating out) carbon dioxide than hydrogen.

In contrast, current commercial membranes favor the transport of hydrogen, a small molecule, over larger carbon dioxide molecules. This process results in hydrogen being transferred to a low-pressure environment that requires expensive recompression of the gas before use.

The new membrane avoids this recompression step by favoring the transport of larger, polar gas molecules as a result of the polar nature of the polymer materials making up the membrane. The polar, reverse-selective materials based on ethylene oxide interact better with polar gases such as carbon dioxide than with smaller, nonpolar hydrogen gas, which is left behind in a high-pressure state.

"The membrane likes carbon dioxide more than hydrogen, and we optimized that affinity," Freeman said. Plasticization, a process that softens materials and dilates them, was also found to improve the movement of the larger carbon dioxide through the new membrane for separation purposes. Several companies have already shown interest in collaborating to develop the material for industrial-scale applications.

Becky Rische | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>