Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material brings hydrogen fuel, cheaper petrochemicals closer to reality

03.02.2006


A rubbery material that can purify hydrogen efficiently in its most usable form for fuel cells and oil refining has been developed by a chemical engineering group at The University of Texas at Austin.



In the Feb. 3 edition of Science, Dr. Benny Freeman details how his laboratory designed the membrane material and tested its ability, with colleagues at Research Triangle Institute (RTI) in Research Triangle Park, N.C., to successfully separate hydrogen from carbon dioxide and other contaminant gases.

This member of a new family of membrane materials with superior gas-separating ability could lower the costs of purifying hydrogen for hydrogen-fueled vehicles. Hydrogen fuel cells are considered a leading alternative energy for running cars and other devices in the future. The membrane material could also replace an expensive step in current petrochemical processing, or reduce how much energy the step requires. The membrane was tested under conditions that mimic those routinely used by the petrochemical industry to refine petroleum components (crude oil and natural gas) for use.


"A significant amount of the hydrogen in use today goes into the refining industry to refine crude oil to produce gasoline or other products, so this membrane could lower refining costs," said Freeman, the Kenneth A. Kobe Professor in Chemical Engineering.

The membrane differs structurally and functionally from previous options, with a key advantage being its ability to permit hydrogen to remain compressed at high pressure. A compressed form of the light-weight gas is needed to process fossil fuels and for it to serve as a readily replaceable fuel for fuel cells.

Freeman and graduate student Haiqing Lin designed the membrane material in Freeman’s laboratory at the university’s Center for Energy and Environmental Resources.

The engineers and RTI collaborators Lora Toy and Raghubir Gupta tested flat, disk-shaped versions of the material for its ability to separate different mixtures of hydrogen and carbon dioxide gases at different temperatures. The researchers used the three common temperatures for industrial hydrogen purification: 95 degrees, 50 degrees and minus 4 degrees Fahrenheit.

The new membrane not only separated these two gases better than previous membranes, but did so when additional components such as hydrogen sulfide and water vapor were present as occurs in industrial settings. The membrane worked so well that it was 40 times more permeable to (better at separating out) carbon dioxide than hydrogen.

In contrast, current commercial membranes favor the transport of hydrogen, a small molecule, over larger carbon dioxide molecules. This process results in hydrogen being transferred to a low-pressure environment that requires expensive recompression of the gas before use.

The new membrane avoids this recompression step by favoring the transport of larger, polar gas molecules as a result of the polar nature of the polymer materials making up the membrane. The polar, reverse-selective materials based on ethylene oxide interact better with polar gases such as carbon dioxide than with smaller, nonpolar hydrogen gas, which is left behind in a high-pressure state.

"The membrane likes carbon dioxide more than hydrogen, and we optimized that affinity," Freeman said. Plasticization, a process that softens materials and dilates them, was also found to improve the movement of the larger carbon dioxide through the new membrane for separation purposes. Several companies have already shown interest in collaborating to develop the material for industrial-scale applications.

Becky Rische | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>