Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer materials suited for use as high temperature insulation

11.01.2006


Geopolymers with the potential for use as refractory castable



From the most technologically aware city dwellers to remote jungle tribes, almost the entire population of the earth know polymeric materials as plastics. Although some plastics are oven proof and can readily withstand high temperatures, they generally melt or burn at extreme temperatures.

Inorganic polymers are different and show promise for use in elevated temperature applications. Inorganic polymers made from aluminosilicates are termed geopolymers. They are amorphous to semi-crystalline and consist of two or three dimensional aluminosilicate networks, dependent on the composition. Geopolymers can be formed using a relatively low temperature processing techniques.


Physical behaviour of geopolymers are similar to those of Portland cement. Consequently, they have been considered as a possible improvement on conventional cements with respect to compressive strength, resistance to fire, heat and acidity, as well as a medium for the encapsulation of hazardous or low/intermediate level radioactive wastes. Although many applications have been speculated upon, their widespread use is restricted due to a lack of long term durability studies, detailed scientific understanding and lack of reproducibility of raw materials.

In this work published in AZojomo*, by Dan Perera and Rachael Trautman from Australian Nuclear Science and Technology Organisation (ANSTO), geopolymers are investigated for suitability as refractory coatings and as low temperature (1000°C) refractory castables.

The researchers found that geopolymers heated up to 1400°C did not show any major melting. The presence of two refractory phases, kalsilite and leucite, and an open porosity of ~38% at 1000°C, should make this material suitable as a refractory or heat insulation material for continuous use at this temperature.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azom.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>