Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames lab alloy could boost next generation jet fighter

06.01.2006


Materials Preparation Center Creates Stronger, Lighter Aluminum Alloy



The next generation of jet fighter aircraft could fly farther and faster thanks to a new high-strength aluminum alloy prepared at the U.S. Department of Energy’s Ames Laboratory. The new alloy is one material being developed for use in the F-35 Joint Strike Fighter, a cutting-edge aircraft that will see widespread use as the primary fighter for the U.S. Navy, Air Force, and Marines as well as U.S. allies abroad.

Researchers at Ames Laboratory’s Materials Preparation Center will produce about 400 pounds of an aluminum-yttrium-nickel alloy over the next few months that will serve as a benchmark for testing and to help refine commercial production techniques. The material is being developed in conjunction with aircraft engine manufacturer Pratt & Whitney and a number of other public and private partners to replace heavier or costlier components in the “cool” sections of jet engines. The material also could be used in other parts of an aircraft such as wing spars.


“When it comes to aircraft design, you want the strongest and lightest materials to get the most efficiency,” said MPC Director Larry Jones. “We (the MPC) have the expertise, processing capabilities and high purity raw materials to develop an alloy that performs up to the requirements for this project.”

If the new material performs up to expectations, it could have a dramatic impact on the performance and efficiency of both commercial and military aircraft. Jones said that Pratt &Whitney engineers estimated that replacing various components in one particular jet engine with the Al-Y-Ni alloy could potentially lighten the engine by 350 pounds. That’s an astronomical weight reduction in aircraft design, where engineers are typically happy to reduce the weight of components by a few pounds here or there.

“It means being able to carry significantly more fuel or payload,” Jones said. “It could also mean lower production costs,” pointing out that a bulkhead currently milled from a solid block of titanium for the JSF takes months to fabricate.

The alloy is produced using a process called high-pressure gas atomization. Pioneered at Ames Laboratory in the 1990’s by metallurgist Iver Anderson, the HPGA process uses a special nozzle to blast a stream of molten alloy material with a pressurized gas such as helium or nitrogen. The result is powder-fine metal particles that are highly uniform in chemical composition and, because they cool so quickly, exhibit the amorphous structure of the liquid metal rather than the crystal structure normally found in bulk metals.

The powdered metal is currently vacuum hot-pressed and hot extruded, a process that bonds the particles together while retaining some of the amorphous structure. This partially amorphous, partially crystallized structure gives HPGA-produced materials improved properties, such as strength and ductility. Preliminary tests of the MPC’s Al-Y-Ni alloy show it far exceeds anything commercially available. The top commercial aircraft-grade aluminum has a tensile strength of 70,000 pounds per square inch while this alloy has exceeded 100,000 psi in repeated preliminary tests.

Tests of the Al-Y-Ni alloy produced by a commercial manufacturer, however, have yielded less desirable results in the 90,000-92,000 psi range. While the basic “recipe” is the same, Jones said there are a number of inherent problems that ultimately affect the strength.

“Aluminum powders are used as rocket fuel so they’re highly explosive,” Jones said. “By using nitrogen gas in our process, it creates a nitride passivition layer so the powders are less likely to be explosive. This nitride layer breaks down during sintering, resulting in very strong bonds between the particles.”

By contrast, Jones explained that the commercial process injects oxygen into the atomization gas stream to create a controlled oxidation of the powders. While the oxidation layer reduces the explosiveness, it remains during sintering, resulting in weaker bonds between particles.

“Purity of the materials going into the alloy also affects the overall strength,” Jones said. “Any exogenous material will result in a weaker end product and that includes any oxidation that takes place.”

To address this problem, the material being produced by the MPC will be kept in an inert environment until after the vacuum hot pressing process is completed. The MPC has modified its HPGA system to capture the powder in a container under an inert atmosphere. The powder will be sieved to less than 32 microns in size in an inert atmosphere glove box before being shipped in a sealed container to DWA Aluminum Composites, Los Angeles, where the vacuum hot pressing process will be completed. After vacuum hot pressing the pressed and sintered powder billet will be extruded. Only then will it be exposed to the normal atmosphere. The results will be studied to help modify and improve processing at the commercial level.

Funding for the production of the material – approximately $475,000 – comes from Pratt & Whitney and the Defense Advanced Research Projects Agency, the central research and development organization for the Department of Defense. DARPA manages and directs selected basic and applied research and development projects for DOD, and pursues research and technology where risk and payoff are both very high and where success may provide dramatic advances for traditional military roles and missions.

“This all came about as a result of basic materials research funded by the (DOE’s) Office of Basic Energy Science,” Jones said. “It’s exciting to see the atomization process we developed advance to this point where it can make a real contribution to a project like the JSF and potentially the entire aviation and aerospace industry.”

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>