Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Scaffolds for Tissue Engineering

23.12.2005


Currently, an interdisciplinary research project is exploring new technologies with regard to biodegradable implants. The project is carried out by two research institutions at the Technische Universität Dresden, the Max Bergmann Center of Biomaterials (MBC) at the Institute of Materials Sciences and the Institute of Textile and Clothing Technology (ITB), as well as the Leibniz Institute of Polymer Research in Dresden (IPF) and the University Hospitals in Ulm and Heidelberg.

The project’s aim is to create biologically resorbable scaffolds using flock technology. Flock technology for example is applied in an industrial scale to the production of the velvety surfaces of spectacle-cases. Now, this method shall help to produce new types of medical implants. In order to create resorbable scaffolds, membranes made of mineralised collagen are covered with a gelatine-based biocompatible glue. In the next step, biologically degradable fibres are flocked on the tapes. "This way a kind of ’velvet structure’ is created on which cells can be seeded with a high density", explains Birgit Mrozik, scientific coworker at the ITB.

To make tissue engineered implants e.g. for cartilage defects, human chondrocytes are cultivated on the scaffolds in cell culture labs outside the body. Later on the whole cell matrix construct is implanted to fill the tissue defect. As the cartilage tissue regenerates, the flock implants then start to degrade.



At the beginning of the project, the research team examined which kind of fibres are possible to use. In medicine for example biologically resorbable fibres are applied to the stitching of internal injuries. Furthermore, the researchers analysed which kind of glue is suitable for the flocking process and for cultivating cells. In addition, possibilities to generate multilayered flock structures are currently being investigated.

Due to the material properties of the new flock scaffolds, the most promising area of application is seen in the field of cartilage, particularly of the spinal disc. Additionally, the new materials are tested for their biomechanical suitability in order to be applied within the spinal disc. The results gained from the interdisciplinary research project could also be helpful for further developments in regard to electrostatic flocking as well as to biotechnology (tissue engineering) and medical textiles.

Birgit Mrozik | alfa
Further information:
http://www.tu-dresden.de

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>