Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Scaffolds for Tissue Engineering

23.12.2005


Currently, an interdisciplinary research project is exploring new technologies with regard to biodegradable implants. The project is carried out by two research institutions at the Technische Universität Dresden, the Max Bergmann Center of Biomaterials (MBC) at the Institute of Materials Sciences and the Institute of Textile and Clothing Technology (ITB), as well as the Leibniz Institute of Polymer Research in Dresden (IPF) and the University Hospitals in Ulm and Heidelberg.

The project’s aim is to create biologically resorbable scaffolds using flock technology. Flock technology for example is applied in an industrial scale to the production of the velvety surfaces of spectacle-cases. Now, this method shall help to produce new types of medical implants. In order to create resorbable scaffolds, membranes made of mineralised collagen are covered with a gelatine-based biocompatible glue. In the next step, biologically degradable fibres are flocked on the tapes. "This way a kind of ’velvet structure’ is created on which cells can be seeded with a high density", explains Birgit Mrozik, scientific coworker at the ITB.

To make tissue engineered implants e.g. for cartilage defects, human chondrocytes are cultivated on the scaffolds in cell culture labs outside the body. Later on the whole cell matrix construct is implanted to fill the tissue defect. As the cartilage tissue regenerates, the flock implants then start to degrade.



At the beginning of the project, the research team examined which kind of fibres are possible to use. In medicine for example biologically resorbable fibres are applied to the stitching of internal injuries. Furthermore, the researchers analysed which kind of glue is suitable for the flocking process and for cultivating cells. In addition, possibilities to generate multilayered flock structures are currently being investigated.

Due to the material properties of the new flock scaffolds, the most promising area of application is seen in the field of cartilage, particularly of the spinal disc. Additionally, the new materials are tested for their biomechanical suitability in order to be applied within the spinal disc. The results gained from the interdisciplinary research project could also be helpful for further developments in regard to electrostatic flocking as well as to biotechnology (tissue engineering) and medical textiles.

Birgit Mrozik | alfa
Further information:
http://www.tu-dresden.de

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>