Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Scaffolds for Tissue Engineering

23.12.2005


Currently, an interdisciplinary research project is exploring new technologies with regard to biodegradable implants. The project is carried out by two research institutions at the Technische Universität Dresden, the Max Bergmann Center of Biomaterials (MBC) at the Institute of Materials Sciences and the Institute of Textile and Clothing Technology (ITB), as well as the Leibniz Institute of Polymer Research in Dresden (IPF) and the University Hospitals in Ulm and Heidelberg.

The project’s aim is to create biologically resorbable scaffolds using flock technology. Flock technology for example is applied in an industrial scale to the production of the velvety surfaces of spectacle-cases. Now, this method shall help to produce new types of medical implants. In order to create resorbable scaffolds, membranes made of mineralised collagen are covered with a gelatine-based biocompatible glue. In the next step, biologically degradable fibres are flocked on the tapes. "This way a kind of ’velvet structure’ is created on which cells can be seeded with a high density", explains Birgit Mrozik, scientific coworker at the ITB.

To make tissue engineered implants e.g. for cartilage defects, human chondrocytes are cultivated on the scaffolds in cell culture labs outside the body. Later on the whole cell matrix construct is implanted to fill the tissue defect. As the cartilage tissue regenerates, the flock implants then start to degrade.



At the beginning of the project, the research team examined which kind of fibres are possible to use. In medicine for example biologically resorbable fibres are applied to the stitching of internal injuries. Furthermore, the researchers analysed which kind of glue is suitable for the flocking process and for cultivating cells. In addition, possibilities to generate multilayered flock structures are currently being investigated.

Due to the material properties of the new flock scaffolds, the most promising area of application is seen in the field of cartilage, particularly of the spinal disc. Additionally, the new materials are tested for their biomechanical suitability in order to be applied within the spinal disc. The results gained from the interdisciplinary research project could also be helpful for further developments in regard to electrostatic flocking as well as to biotechnology (tissue engineering) and medical textiles.

Birgit Mrozik | alfa
Further information:
http://www.tu-dresden.de

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>