Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£6m to develop new class of light alloys

14.12.2005


The University of Manchester has been awarded £5.98m to develop a new class of light alloy solutions that will transform the way aircraft, trains and automobiles are built.

The grant, which will span a five year period, has been awarded by the Engineering and Physical Sciences Research Council (EPSRC) under the Portfolio Partnership Scheme.

Research into improving the performance of light alloys will be carried out in conjunction with Alcan, Novelis, BAE Systems, Airbus, MEL and Jaguar.



The project, entitled: “Light Alloys for Environmentally Sustainable Transport,” will be the largest of its kind in the UK with plans for over fifty research staff over the next five years.

It will focus on developing new methods for the processing, forming, joining and surface engineering of aluminium, titanium and magnesium. The aim is to develop new engineering processes which will enable aircraft and car manufacturers to design and build lighter, more environmentally-friendly vehicles using these materials.

Professor George Thompson, Head of the Corrosion and Protection Centre in the School of Materials, who is leading the project, said: “These materials are exceptionally difficult to form into complex shapes or weld, which dramatically limits their use in the design and manufacture of air, land and sea vessels.

“This is a major issue for the automotive and aerospace industries that are under increasing pressure to save fuel and reduce pollution. If we can improve processes such as the welding of aluminium panels then they will be able to build much lighter aircraft and cars, saving on fuel and emissions.”

£2m has been earmarked for cutting edge equipment to aid the research. This will include state of the art characterisation facilities, advanced welding apparatus and laser surface treatment equipment.

Research will focus on four main areas of joining, forming, microstructure and surface modification, and will address major issues such as the use of anti-corrosive chromate coatings in the aerospace industry which have a significant impact on the environment.

Professor Philip Prangnell from the School of Materials, said: “These processing methods will enable components to be manufactured more cheaply and with much less waste material than that associated with current methods. Ultimately, we hope our research will see stronger, lighter, more environmentally-compliant materials incorporated into the next generation of aircraft, cars and ships.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/pressreleases/portfolio/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>