Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


£6m to develop new class of light alloys


The University of Manchester has been awarded £5.98m to develop a new class of light alloy solutions that will transform the way aircraft, trains and automobiles are built.

The grant, which will span a five year period, has been awarded by the Engineering and Physical Sciences Research Council (EPSRC) under the Portfolio Partnership Scheme.

Research into improving the performance of light alloys will be carried out in conjunction with Alcan, Novelis, BAE Systems, Airbus, MEL and Jaguar.

The project, entitled: “Light Alloys for Environmentally Sustainable Transport,” will be the largest of its kind in the UK with plans for over fifty research staff over the next five years.

It will focus on developing new methods for the processing, forming, joining and surface engineering of aluminium, titanium and magnesium. The aim is to develop new engineering processes which will enable aircraft and car manufacturers to design and build lighter, more environmentally-friendly vehicles using these materials.

Professor George Thompson, Head of the Corrosion and Protection Centre in the School of Materials, who is leading the project, said: “These materials are exceptionally difficult to form into complex shapes or weld, which dramatically limits their use in the design and manufacture of air, land and sea vessels.

“This is a major issue for the automotive and aerospace industries that are under increasing pressure to save fuel and reduce pollution. If we can improve processes such as the welding of aluminium panels then they will be able to build much lighter aircraft and cars, saving on fuel and emissions.”

£2m has been earmarked for cutting edge equipment to aid the research. This will include state of the art characterisation facilities, advanced welding apparatus and laser surface treatment equipment.

Research will focus on four main areas of joining, forming, microstructure and surface modification, and will address major issues such as the use of anti-corrosive chromate coatings in the aerospace industry which have a significant impact on the environment.

Professor Philip Prangnell from the School of Materials, said: “These processing methods will enable components to be manufactured more cheaply and with much less waste material than that associated with current methods. Ultimately, we hope our research will see stronger, lighter, more environmentally-compliant materials incorporated into the next generation of aircraft, cars and ships.”

Simon Hunter | alfa
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>