Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers discover why toucan beaks are models of lightweight strength

01.12.2005


UCSD materials scientists discovered that the lightweight strength of the Toco Toucan’s beak is due to a matrix of bony fibers and drum-like membranes sandwiched between an outer layer of keratin, the protein that makes up fingernails, hair, and horn.


The beak has a hollow region in an interior region where the mechanical stresses were insignificant.


As a boy growing up in Brazil 40 years ago, Marc A. Meyers marveled at the lightweight toughness of toucan beaks that he occasionally found on the forest floor. Now a materials scientist and professor of mechanical and aerospace engineering at UCSD’s Jacobs School of Engineering, Meyers said makers of airplanes and automobiles may benefit from the first ever detailed engineering analysis of toucan beaks conducted in his lab.

“Our computer modeling shows that the beak is optimized to an amazing degree for high strength and very little weight,” said Meyers. “It’s almost as if the toucan has a deep knowledge of mechanical engineering.”

In a paper to be published Dec. 1 in Acta Materialia, Meyers and graduate students Yasuaki Seki and Matthew S. Schneider reported that the secret to the toucan beak’s lightweight strength is an unusual bio-composite. The interior of the beak is rigid "foam" made of bony fibers and drum-like membranes sandwiched between outer layers of keratin, the protein that makes up fingernails, hair, and horn. Just as the hook-shaped barbs on cockleburs inspired the development of Velcro, Meyers said the avian bio-composite could inspire the design of ultra-light aircraft and vehicle components with synthetic foams made with metals and polymers.



"The big surprise was our finding that the beak’s sandwich structure also behaves as a high energy impact-absorption system," said Meyers. "Panels that mimic toucan beaks may offer better protection to motorists involved in crashes."

Toucans are highly social, noisy residents of rainforests in the Amazon, although the birds live as far north as Mexico. They use their extremely large and often brightly colored beaks for a variety of purposes, from gathering fruit from the tips of tree branches, to defending themselves.

Bird beaks are typically either short and thick or long and thin. The Meyers team decided to prospect for a novel material in toucan beaks because they are both long and thick. Emerald Forest Bird Gardens, a California breeder of exotic birds, provided beaks from toucans that had died from natural causes to Meyers’s team. They analyzed the beaks’ density, stiffness, hardness, and response to compression and stretching. They also examined the beaks with a scanning electron microscope.

The beak’s interior is a highly organized matrix of stiff cancellous bone fibers that looks as if it was dipped into a soapy solution and dried, generating drum-like membranes that interconnect the fibers. The result is a solid “foam” of air-tight cells that gives the beak additional rigidity.

"The beak is mostly air," said Meyers. "While the inner part of human bone also contains cancellous bone, we don’t have the foam interconnections, which produce a much stronger structure with very little additional weight."

Like a house covered by a shingled roof, the foam is covered with overlapping keratin tiles, each about 50 micrometers in diameter and 1 micrometer thick, which are glued together to produce sheets.

The study in Acta Materialia also noted a hollow region extending about half the length of the upper and lower beaks. "When we did the calculations, we discovered that there are only very insignificant mechanical stresses in the center of the beak at the position of the hollow areas," said Meyers. "This is why I jokingly tell my students that toucans have a deep knowledge of mechanics. They don’t bother adding structural support in a part of the beak that doesn’t really need it."

Rex Graham | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news_events/releases/release.sfe?id=417
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>