Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers create super compressible foam-like films

28.11.2005


At the heart of the promises of nanotechnology – the emerging science of making molecular machines – are carbon nanotubes. These are tiny cylinders with remarkable properties that could improve products ranging from house paint to microchips.



Now, engineers at the University of Florida and two other universities have added another possibility: Foams used in everything from construction to cushions to packaging.

An article about the engineers’ discovery appears Friday in the journal Science.


First created in 1991, carbon nanotubes are among new forms of carbon called fullerenes because their sides mimic the geodesic domes designed by famed mathematician Buckminster Fuller. Nanotubes are infinitesimal cylinders with single or multiple walls that can be only a few nanometers wide. One nanometer equals one-billionth of a meter.

Carbon nanotubes are very strong. Mixed with conventional materials, they are already improving the performance of concrete and other products. They also have electrical and magnetic characteristics expected to make them useful in microchips and other electronics.

Engineers at the University of Florida, University of Hawaii and Rensselaer Polytechnic University appear to have opened the door to another use. Using a high-temperature furnace, the engineers grew foam-like nanotube films that proved to be super compressible.

Testing showed the films can be squeezed to 15 percent of their regular size, forming regular folded structures throughout the films.

Greg Sawyer, a UF associate professor of mechanical and aerospace engineering, said researchers "hope to infiltrate the films with solid materials to create new ’nanocomposites.’" These multifunctional nanocomposites would be useful for solid lubricating coatings in air and space applications, he said.

Greg Sawyer | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>