Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers shed new light on how chemotherapy-induced leukemia develops

17.11.2005


Potentially fatal side-effect may be preventable, new study suggests



Topoisomerase II inhibitors are among the most successful chemotherapy drugs used to treat human cancer. But a small percentage of patients treated with these agents recover from their initial malignancy only to develop a second cancer, leukemia.
Researchers at UC Davis Cancer Center have shed new light on this poorly understood process. In a study to be published in the Nov. 22 issue of the journal Leukemia, the researchers report that topoisomerase II inhibitors do not directly cause leukemia -- and suggest that it may be possible to prevent therapy-induced leukemia. (The study was posted online in the journal on Sept. 29.)

"There are two competing theories of how these therapy-induced leukemias arise," said Andrew Vaughan, a radiation biologist at UC Davis Cancer Center and senior author of the new study. "One is that the topoisomerase II inhibitor drugs, in combination with the topoisomerase II enzyme they target, induce random genetic changes that lead to leukemia onset. The other is that another, potentially correctable process is at work."



In the study, Vaughan and his colleagues at Loyola University and the Sacramento Veterans Administration Hospital linked what appears to be the earliest molecular event involved in the development of therapy-induced leukemia, the rearrangement of the MLL gene (a gene involved in leukemia), to factors that activate apoptosis, or programmed cell death.

"This rearrangement appears to be independent of the topoisomerase II enzyme," Vaughan said. "This suggests that another process, such as apoptosis itself, is involved."

Topoisomerase II inhibitors work by goading cancerous cells into apoptosis. Vaughan suggests that therapy-induced leukemia may occur when some cancer cells fail to complete apoptosis and instead survive in a mutated form that contains the leukemia-inducing MLL gene.

"The good news is that apoptosis is a well-understood and potentially correctable process," Vaughan said. "Through genetic or pharmacologic means, we may be able to manipulate the cells that survive chemotherapy to complete apoptosis and die -- averting the development of leukemia."

Claudia Morain | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>