Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation in Nanoporous Chemistry

04.10.2005


Science researchers from the University of Versailles (France), in collaboration with the ID31 beam line at the European Synchrotron Radiation Facility (ESRF), report their progress in the design and characterisation of microporous materials. The combination of adept chemistry and computational design made possible the synthesis of a new material, named MIL-101 by its originators, (where MIL stands for Matériaux de l’Institut Lavoisier), with very large internal pores (ø~3.4nm) and surface area (5,900 m2.g-1). The new, crystalline material is representative of a class of compounds, known as metal organic framework materials, (MOFs), with potential applications in many fields including chemical separation, heterogeneous catalysis and gas storage. Confirmation of the structure of the new material exploited the intense X-ray beams at the ESRF.


Starting from simple assemblies and linking units, larger and larger building blocks combine to form crystalline nanoporous materials with more surface area than zeolites. The Zeotype architecture of MIL-101 displays mesoporous cages with diameters of 29 Å (green) and 34 Å (red), featuring 12 Å pentagonal and 15 Å hexagonal openings. Credits: Science



Porous materials with large, regular, accessible cages and tunnels are increasingly in demand for many applications including chemical separation or purification, catalysis, molecular sensors, electronics and gas storage. Depending on their structure and pore size, these materials allow molecules of only certain shapes and sizes to enter the pores, a property known as shape selectivity. The environment within the pores can be very different to that outside, thus promoting chemical reactions that do not occur in the bulk material. Another prospective use is as templates for forming calibrated, monodisperse nanomaterials. In this respect, the larger the pores, the wider the range of reactants that can be manipulated or stored.

Férey and co-workers’ strategy combined three main ideas. First, discrete multi-atom building units were designed and generated in solution (Fig. 1). Second, with the aim of producing a compound with large pores, the building units were combined to produce larger units. For MIL-101 the key building unit is a supercluster of four smaller clusters linked by difunctional organic components to make a large tetrahedral assembly. The third idea involves being sure of what you’ve actually made, i.e. how to determine the structure of the new material. It is well known that it becomes increasingly difficult to grow highly diffracting single crystals as structures grow larger. When single crystals are unavailable, powder diffraction can provide sufficient information for structure solution. Based on their understanding of the ways the building units might combine, possible structural models were predicted and assessed via a computational strategy that calculated their relative stability. Favourable solutions were then compared with the high quality powder diffraction data collected from MIL-101 at ESRF. Once a good match between the predicted and measured powder patterns was seen, the researchers could be sure of the nature of their new material.


This breakthrough opens up a new field for targeted chemistry, computational methods for structure prediction and most importantly novel materials with useful applications. Férey and co-workers describe the hydrid solid, MIL-101, as an excellent candidate for the storage of gas, creation of nano-objects in a regular and monodisperse mode with specific physical properties, or for drug delivery. Recent studies on smaller porous materials carried out by various research groups around the world leave open the possibility of successfully creating hydrid materials with even larger pores and more complex structures keeping always in mind that the most important goal should be to incorporate useful functions.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr
http://www.esrf.fr/NewsAndEvents/PressReleases/INNOVATION_IN_NANOPOROUS_CHEMISTRY_AT_THE_ESRF/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>