Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne theorist gains new insight into the nature of nanodiamond

12.09.2005


The newest promising material for advanced technology applications is diamond nanotubes, and research at the U.S. Department of Energy’s Argonne National Laboratory is giving new insight into the nature of nanodiamond.



Argonne researcher Amanda Barnard, theorist in the Center for Nanoscale Materials, is working with colleagues at two Italian universities who produced innovative diamond-coated nanotubes.

The diamond-coated tubes resemble a stick of rock candy, holding a layer of diamond 20 to 100 nm thick. A nanometer is one millionth of a millimeter. The period at the end of this sentence is about one million nanometers long. The technology in its fledgling state has already caught the eye of the electronics industry for the promise of ultra thin televisions with cathode ray tube-like quality picture at a fraction of today’s current flat panel television costs.


Diamond offers an amazing array of medical and technological possibilities. Wire molecules can be attached to it and diamond has superior light emission properties. While diamond is an insulating material, the surface is highly electronegative. A nanodiamond coating consists of pure surface diamond. This gives a diamond coated nanowire conductance from the nanotubes and the superior conduction from the diamond. Add to this superior light emission properties and very low voltage requirements, and the possibility exists for very flat, low energy displays.

"By using a more efficient conductor, nanotubes, with a more efficient field emitter, in this case nanodiamonds, you get more efficient devices," said Barnard. "A lot of groups are looking for something better to make electronic displays out of, and this is just another candidate that looks very promising."

Researchers from the University La Sapienza and the University Tor Vergata discovered the ability for a nanotube to grow nanodiamond under certain conditions in 2004, but did not know the specifics of how the diamond grew. To better understand the conditions that brought them their discovery, researchers from the group brought their discovery to Barnard.

Barnard, a postdoc from the Royal Melbourne Institute of Technology University, published her original results on the modeling of diamond nanowires in the October 2003 issue of Nano Letters. Her theories earned her the recognition of the Italian group and she was approached in March of 2004 to help with calculations on their discovery.

"They could make them, but they couldn’t understand exactly what was happening or how they were forming," said Barnard. "They knew what it was, they could characterize it, but they didn’t know how the growth progressed."

Barnard calculated that during the process of etching – the term for the degradation of nanotubes – atomic hydrogen can change the hybridization of chemical bonds between carbon atoms of a nanotube.

"Traditionally in a hydrogen environment carbon nanotubes would fall apart and disintegrate, but something different was happening. We actually established that if the amount of hydrogen present [is in correct proportion], the defects that form will nucleate into diamond before there is a chance to etch."

These imperfections that form uniformly across the nanotube’s surface allow for the bonding of diamond molecules, which then begin to grow the length of the tube. An added bonus property is that the end of the nanotube is coated with a thicker bulb of nanodiamond and upon formation the structures stand upright without manipulation.

Barnard is now on a fellowship at Oxford University, but is continuing to conduct research at the Center for Nanoscale Materials, now under construction. Barnard has great expectations for the opportunities the new center will open up for nanoscale research.

"I hope that the CNM will give me more opportunity to collaborate with experimental groups," said Barnard. "I am a great advocate of doing experimentally relevant theory, and the CNM will be a great place for doing that."

The Center for Nanoscale Materials at Argonne is being built with funding from the Department of Energy Office of Science and the State of Illinois, each of which is contributing $35 million to construction and instrumentation of the facility.

Donna Jones Pelkie | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>