Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne theorist gains new insight into the nature of nanodiamond

12.09.2005


The newest promising material for advanced technology applications is diamond nanotubes, and research at the U.S. Department of Energy’s Argonne National Laboratory is giving new insight into the nature of nanodiamond.



Argonne researcher Amanda Barnard, theorist in the Center for Nanoscale Materials, is working with colleagues at two Italian universities who produced innovative diamond-coated nanotubes.

The diamond-coated tubes resemble a stick of rock candy, holding a layer of diamond 20 to 100 nm thick. A nanometer is one millionth of a millimeter. The period at the end of this sentence is about one million nanometers long. The technology in its fledgling state has already caught the eye of the electronics industry for the promise of ultra thin televisions with cathode ray tube-like quality picture at a fraction of today’s current flat panel television costs.


Diamond offers an amazing array of medical and technological possibilities. Wire molecules can be attached to it and diamond has superior light emission properties. While diamond is an insulating material, the surface is highly electronegative. A nanodiamond coating consists of pure surface diamond. This gives a diamond coated nanowire conductance from the nanotubes and the superior conduction from the diamond. Add to this superior light emission properties and very low voltage requirements, and the possibility exists for very flat, low energy displays.

"By using a more efficient conductor, nanotubes, with a more efficient field emitter, in this case nanodiamonds, you get more efficient devices," said Barnard. "A lot of groups are looking for something better to make electronic displays out of, and this is just another candidate that looks very promising."

Researchers from the University La Sapienza and the University Tor Vergata discovered the ability for a nanotube to grow nanodiamond under certain conditions in 2004, but did not know the specifics of how the diamond grew. To better understand the conditions that brought them their discovery, researchers from the group brought their discovery to Barnard.

Barnard, a postdoc from the Royal Melbourne Institute of Technology University, published her original results on the modeling of diamond nanowires in the October 2003 issue of Nano Letters. Her theories earned her the recognition of the Italian group and she was approached in March of 2004 to help with calculations on their discovery.

"They could make them, but they couldn’t understand exactly what was happening or how they were forming," said Barnard. "They knew what it was, they could characterize it, but they didn’t know how the growth progressed."

Barnard calculated that during the process of etching – the term for the degradation of nanotubes – atomic hydrogen can change the hybridization of chemical bonds between carbon atoms of a nanotube.

"Traditionally in a hydrogen environment carbon nanotubes would fall apart and disintegrate, but something different was happening. We actually established that if the amount of hydrogen present [is in correct proportion], the defects that form will nucleate into diamond before there is a chance to etch."

These imperfections that form uniformly across the nanotube’s surface allow for the bonding of diamond molecules, which then begin to grow the length of the tube. An added bonus property is that the end of the nanotube is coated with a thicker bulb of nanodiamond and upon formation the structures stand upright without manipulation.

Barnard is now on a fellowship at Oxford University, but is continuing to conduct research at the Center for Nanoscale Materials, now under construction. Barnard has great expectations for the opportunities the new center will open up for nanoscale research.

"I hope that the CNM will give me more opportunity to collaborate with experimental groups," said Barnard. "I am a great advocate of doing experimentally relevant theory, and the CNM will be a great place for doing that."

The Center for Nanoscale Materials at Argonne is being built with funding from the Department of Energy Office of Science and the State of Illinois, each of which is contributing $35 million to construction and instrumentation of the facility.

Donna Jones Pelkie | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>