Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne theorist gains new insight into the nature of nanodiamond

12.09.2005


The newest promising material for advanced technology applications is diamond nanotubes, and research at the U.S. Department of Energy’s Argonne National Laboratory is giving new insight into the nature of nanodiamond.



Argonne researcher Amanda Barnard, theorist in the Center for Nanoscale Materials, is working with colleagues at two Italian universities who produced innovative diamond-coated nanotubes.

The diamond-coated tubes resemble a stick of rock candy, holding a layer of diamond 20 to 100 nm thick. A nanometer is one millionth of a millimeter. The period at the end of this sentence is about one million nanometers long. The technology in its fledgling state has already caught the eye of the electronics industry for the promise of ultra thin televisions with cathode ray tube-like quality picture at a fraction of today’s current flat panel television costs.


Diamond offers an amazing array of medical and technological possibilities. Wire molecules can be attached to it and diamond has superior light emission properties. While diamond is an insulating material, the surface is highly electronegative. A nanodiamond coating consists of pure surface diamond. This gives a diamond coated nanowire conductance from the nanotubes and the superior conduction from the diamond. Add to this superior light emission properties and very low voltage requirements, and the possibility exists for very flat, low energy displays.

"By using a more efficient conductor, nanotubes, with a more efficient field emitter, in this case nanodiamonds, you get more efficient devices," said Barnard. "A lot of groups are looking for something better to make electronic displays out of, and this is just another candidate that looks very promising."

Researchers from the University La Sapienza and the University Tor Vergata discovered the ability for a nanotube to grow nanodiamond under certain conditions in 2004, but did not know the specifics of how the diamond grew. To better understand the conditions that brought them their discovery, researchers from the group brought their discovery to Barnard.

Barnard, a postdoc from the Royal Melbourne Institute of Technology University, published her original results on the modeling of diamond nanowires in the October 2003 issue of Nano Letters. Her theories earned her the recognition of the Italian group and she was approached in March of 2004 to help with calculations on their discovery.

"They could make them, but they couldn’t understand exactly what was happening or how they were forming," said Barnard. "They knew what it was, they could characterize it, but they didn’t know how the growth progressed."

Barnard calculated that during the process of etching – the term for the degradation of nanotubes – atomic hydrogen can change the hybridization of chemical bonds between carbon atoms of a nanotube.

"Traditionally in a hydrogen environment carbon nanotubes would fall apart and disintegrate, but something different was happening. We actually established that if the amount of hydrogen present [is in correct proportion], the defects that form will nucleate into diamond before there is a chance to etch."

These imperfections that form uniformly across the nanotube’s surface allow for the bonding of diamond molecules, which then begin to grow the length of the tube. An added bonus property is that the end of the nanotube is coated with a thicker bulb of nanodiamond and upon formation the structures stand upright without manipulation.

Barnard is now on a fellowship at Oxford University, but is continuing to conduct research at the Center for Nanoscale Materials, now under construction. Barnard has great expectations for the opportunities the new center will open up for nanoscale research.

"I hope that the CNM will give me more opportunity to collaborate with experimental groups," said Barnard. "I am a great advocate of doing experimentally relevant theory, and the CNM will be a great place for doing that."

The Center for Nanoscale Materials at Argonne is being built with funding from the Department of Energy Office of Science and the State of Illinois, each of which is contributing $35 million to construction and instrumentation of the facility.

Donna Jones Pelkie | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht How effective are bonding agents? Fraunhofer uses liquid chromatography for characterization
24.10.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>