Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Argonne theorist gains new insight into the nature of nanodiamond


The newest promising material for advanced technology applications is diamond nanotubes, and research at the U.S. Department of Energy’s Argonne National Laboratory is giving new insight into the nature of nanodiamond.

Argonne researcher Amanda Barnard, theorist in the Center for Nanoscale Materials, is working with colleagues at two Italian universities who produced innovative diamond-coated nanotubes.

The diamond-coated tubes resemble a stick of rock candy, holding a layer of diamond 20 to 100 nm thick. A nanometer is one millionth of a millimeter. The period at the end of this sentence is about one million nanometers long. The technology in its fledgling state has already caught the eye of the electronics industry for the promise of ultra thin televisions with cathode ray tube-like quality picture at a fraction of today’s current flat panel television costs.

Diamond offers an amazing array of medical and technological possibilities. Wire molecules can be attached to it and diamond has superior light emission properties. While diamond is an insulating material, the surface is highly electronegative. A nanodiamond coating consists of pure surface diamond. This gives a diamond coated nanowire conductance from the nanotubes and the superior conduction from the diamond. Add to this superior light emission properties and very low voltage requirements, and the possibility exists for very flat, low energy displays.

"By using a more efficient conductor, nanotubes, with a more efficient field emitter, in this case nanodiamonds, you get more efficient devices," said Barnard. "A lot of groups are looking for something better to make electronic displays out of, and this is just another candidate that looks very promising."

Researchers from the University La Sapienza and the University Tor Vergata discovered the ability for a nanotube to grow nanodiamond under certain conditions in 2004, but did not know the specifics of how the diamond grew. To better understand the conditions that brought them their discovery, researchers from the group brought their discovery to Barnard.

Barnard, a postdoc from the Royal Melbourne Institute of Technology University, published her original results on the modeling of diamond nanowires in the October 2003 issue of Nano Letters. Her theories earned her the recognition of the Italian group and she was approached in March of 2004 to help with calculations on their discovery.

"They could make them, but they couldn’t understand exactly what was happening or how they were forming," said Barnard. "They knew what it was, they could characterize it, but they didn’t know how the growth progressed."

Barnard calculated that during the process of etching – the term for the degradation of nanotubes – atomic hydrogen can change the hybridization of chemical bonds between carbon atoms of a nanotube.

"Traditionally in a hydrogen environment carbon nanotubes would fall apart and disintegrate, but something different was happening. We actually established that if the amount of hydrogen present [is in correct proportion], the defects that form will nucleate into diamond before there is a chance to etch."

These imperfections that form uniformly across the nanotube’s surface allow for the bonding of diamond molecules, which then begin to grow the length of the tube. An added bonus property is that the end of the nanotube is coated with a thicker bulb of nanodiamond and upon formation the structures stand upright without manipulation.

Barnard is now on a fellowship at Oxford University, but is continuing to conduct research at the Center for Nanoscale Materials, now under construction. Barnard has great expectations for the opportunities the new center will open up for nanoscale research.

"I hope that the CNM will give me more opportunity to collaborate with experimental groups," said Barnard. "I am a great advocate of doing experimentally relevant theory, and the CNM will be a great place for doing that."

The Center for Nanoscale Materials at Argonne is being built with funding from the Department of Energy Office of Science and the State of Illinois, each of which is contributing $35 million to construction and instrumentation of the facility.

Donna Jones Pelkie | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>