Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel material may demonstrate long-sought ’liquid’ magnetic state

09.09.2005


A novel material that may demonstrate a highly unusual "liquid" magnetic state at extremely low temperatures has been discovered by a team of Japanese and U.S. researchers, according to tomorrow’s issue of Science.*


A crystal diagram shows the triangle-shaped atomic structure of nickel gallium sulfide, which may have an unusual "liquid" magnetic state at low temperatures. Red spheres represent nickel, green spheres are gallium, and yellow are sulfur. Image credit: S. Nakatsuji et al., Science, 9/9/2005


Multi-colored arrows show the disordered array of magnetic spins associated with the electrons of nickel within NiGa2S4. The data were collected by precisely measuring the change in speed and direction of neutrons as they were passed through the material and interacted with the electrons. Image credit: S. Nakatsuji et al., Science, 9/9/2005



The material, nickel gallium sulfide (NiGa2S4), was synthesized by scientists at Kyoto University. Its properties were studied by both the Japanese team and by researchers from The Johns Hopkins University (JHU) and the University of Maryland (UM) at the Commerce Department’s National Institute of Standards and Technology (NIST).

The scientists studied the polycrystalline sample using both X-rays and neutrons as probes to understand its structure and properties. The neutron experiments were conducted at the NIST Center for Neutron Research.


The team found that the triangular arrangement of the material’s atoms appears to prevent alignment of magnetic "spins," the characteristic of electrons that produces magnetism. A "liquid" magnetic state occurs when magnetic spins fluctuate in a disorderedly, fluid-like arrangement that does not produce an overall magnetic force. The state was first proposed as theoretically possible about 30 years ago. A liquid magnetic state may be related to the similarly fluid way that electrons flow without resistance in superconducting materials.

According to Collin Broholm, a professor in the Department of Physics and Astronomy at The Johns Hopkins University in Baltimore, "the current work shows that at an instant in time the material looks like a magnetic liquid, but whether there are fluctuations in time, as in a liquid, remains to be seen."

Each electron can be thought of as a tiny bar magnet. The direction of its "north" pole is its spin. "An ordered pattern of spins generally uses less energy," says Broholm, "but the triangular crystal structure prevents this from happening in this material."

The team conducted their neutron experiments with an instrument called a "disk chopper spectrometer." The only one of its kind in North America, the instrument sends bursts of neutrons of the same wavelength through a sample. Then, more than 900 detectors arranged in a large semicircle determine exactly where and when the neutrons emerge, providing information key to mapping electron spins.

"The energy range and resolution we can achieve with this instrument is ideal for studying magnetic systems," adds Yiming Qiu, a NIST guest researcher from UM.

The wavelength of the slowed-down (cold) neutrons available at the NIST facility--less than 1 nanometer (billionth of meter)--also allows the researchers to study nanoscale magnetic properties too small to be measured with other methods.

* S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, Y. Maeno. "Spin Disorder on a triangular lattice." Science, Sept. 9, 2005.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>