Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers creating moldable materials for fuel cell bipolar plates

02.09.2005


Composite material, compression process to reduce time, cost of manufacturing bipolar plates



A single fuel cell does not produce enough energy to power a car. So fuel cells are stacked, with a bipolar plate between each cell through which electrons are conducted. The hydrogen fuel and oxygen, which are part of the fuel cell chemistry, enter the plate through channels along the face on each side of the plates. Creating the channels in the bipolar plate is a manufacturing challenge.

About 29 percent of the cost of a fuel cell stack is the bipolar plate, and machining channels into the plates is a significant factor, said Donald Baird, who is the Harry C. Wyatt Professor of Chemical Engineering at Virginia Tech. "Machining 1 millimeter by 1 millimeter (1 mm x 1 mm) channels is expensive and time consuming."


So researchers at Virginia Tech are developing compression moldable composite bipolar plates with channels included. Baird and Jianhua Huang, research scientist in chemical engineering at Virginia Tech, will present their research at the 230th American Chemical Society National Meeting, being held in Washington, D.C., Aug. 28-Sept. 1.

Using a thermoplastic composite and a wet-lay process, the researchers created a material with high electrical conductivity and good mechanical properties, that is a barrier to hydrogen and oxygen, and is easy to manufacture so that the channels can be molded in. The properties of the bipolar plates, which will be discussed at the ACS meeting, exceed the Department of Energy’s minimum standards and industry requirements in terms of electrical conductivity along the plate and of strength. "Through plane conductivity needs some improvement (presently values as high as 35 S/cm are obtained)," Baird said.

The Virginia Tech researchers are continuing to work on optimizing the manufacturing scheme – how fast the channels can be created and the material can be cooled, Baird said. "We are also working on different methods of heating, such as induction versus microwaving."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>