Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne researchers create new diamond-nanotube composite material

31.08.2005


Researchers at the U.S. Department of Energy’s Argonne National Laboratory have combined the world’s hardest known material – diamond – with the world’s strongest structural form – carbon nanotubes. This new process for “growing” diamond and carbon nanotubes together opens the way for its use in a number of energy-related applications.



The technique is the first successful synthesis of a diamond-nanotube nanocomposite, which means for the first time this specialized material has been produced at the nanometer size – one-millionth of a millimeter, or thousands of times smaller than the period at the end of this sentence.

The result established for the first time a process for making these materials a reality, setting the stage for several fundamental advances in the field of nanostructured carbon materials.


The resulting material has potential for use in low-friction, wear-resistant coatings, catalyst supports for fuel cells, high-voltage electronics, low-power, high-bandwidth radio frequency microelectromechanical/nanoelectromechanical systems (MEMS/NEMS), thermionic energy generation, low-energy consumption flat panel displays and hydrogen storage.

Diamond is called the hardest material because of its ability to resist pressure and permanent deformation, and its resistance to being scratched. Carbon nanotubes, which consist of sheets of graphitic carbon wrapped to form tubes with diameters only nanometers in size, are the strongest structures because they can withstand the highest tensile force per gram of any known material.

“Diamond is hard because of its dense atomic structure and the strength of the bonds between atoms,” said Argonne’s John Carlisle, one of the developers of the new material. “The larger the distance between atoms, the weaker the links binding them together. Carbon’s bond strength and small size enable it to form a denser, stronger mesh of atomic bonds than any other material.”

Diamond has its drawbacks, however. Diamond is a brittle material and is normally not electrically conducting. Nanotubes, on the other hand, are incredibly strong and are also great electrical conductors, but harnessing these attributes into real materials has proved elusive.

By integrating these two novel forms of carbon together at the nanoscale a new material is produced that combines the material properties of both diamond and nanotubes.

The new hybrid material was created using Ultrananocrystalline™ diamond (UNCD™ ), a novel form of carbon developed at Argonne. The researchers made the two materials – ultrananocrystalline diamond and carbon nanotubes – grow simultaneously into dense thin films.

This was accomplished by exposing a surface covered with a mixture of diamond nanoparticles and iron nanoparticle “seeds” to an argon-rich, hydrogen-poor plasma normally used to make UNCD. The diamond and iron “seeds” catalyze the UNCD and carbon nanotube growth, respectively, and the plasma temperature and deposition time are regulated to control the speed at which the composite material grows, since carbon nanotubes normally grow much faster than ultrananocrystalline diamond.

“Experimenting with these variables led us to the right combination,” said Argonne’s Jeffrey Elam, one of the developers. Added another of the developers, Xingcheng Xiao, “It is possible that the plasma environment causes local charging effects that cause attractive forces to arise between the ultrananocrystalline diamond supergrains and the carbon nanotubes. If so, such hybrid structures could have interesting electronic and photonic transport properties.”

The next step is to develop patterning techniques to control the relative position and orientation of the ultrananocrystalline diamond and carbon nanotubes within the material.

“In addition, we hope to understand the structure and properties of these materials, particularly the mechanical, tribological and transport properties,” developer Orlando Auciello said.

The research was featured in the June on the cover of the peer-reviewed journal, Advanced Materials.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is managed by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or cfoster@anl.gov) at Argonne.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>