Researchers examine potential for ’refilling’ hydrogen storage material

Performing quantum calculations on a supercomputer, scientists at Pacific Northwest National Laboratory have characterized a material that might allow on-board refueling of hydrogen powered vehicles.


Researchers, led by Maciej Gutowski, looked at different crystalline structures of a compound made up of nitrogen, boron and hydrogen – NBH6 – and found one that might be more stable compared to ammonia borane, a molecular crystal built of NH3BH3 molecules. Ammonia borane can hold a lot of hydrogen but isn’t easily reversible – able to be refilled with hydrogen. Ammonia borane, as a storage material, would likely have to be removed from the vehicle and be sent to some sort of processing plant and undergo a reaction to be refilled.

The more stable compound, diammoniate of diborane or DADB, holds more promise for reversibility. Initial thermodynamic properties for the compound indicate that it might spontaneously uptake hydrogen fuel.

This work is performed under the Grand Challenge Project “Computational studies of materials to hydrogen storage” in the Molecular Sciences Computing Facility at PNNL. Researchers plan to perform additional calculations, synthesize the diammoniate of diborane compound and test their theories on the material in the coming year.

Media Contact

Susan Bauer EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors