Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher reports nano-particle dispersion technique improves polymers

30.08.2005


Supercritical fluid carbon dioxide used; melt properties provide monitor



There is a lot of excitement about incorporating nano particles into polymers because of the ability to improve various properties with only a small percent of the particles. "You can improve the barrier to gases, such as hydrogen, carbon dioxide, and oxygen. You can increase material strength with little increase in weight," said Don Baird, professor of chemical engineering at Virginia Tech.

But there are problems. "While 1 percent by weight of nano particles will change a material’s properties dramatically, 2 or 3 percent provides hardly any additional enhancement," he said. "The particles just clump together, and thereby reduce the advantages associated with the surface area of single particles."


Another problem is that the incorporation of nano particles changes a polymer’s flow properties leading to potential processing problems.

Baird’s research group at Virginia Tech has developed a method for improving the dispersion, or exfoliation, of individual nano particles into polymers. He will present his research at the 230th American Chemical Society National Meeting, held in Washington, D.C., Aug. 28-Sept. 1. "The paper will present how we are dispersing nano particles and how we are using flow properties to monitor dispersion," he said.

Using supercritical carbon dioxide, the researchers are able to exfoliate nano particles at higher concentrations, leading to further enhancement of mechanical properties than presently possible using just mechanical mixing. "Carbon dioxide is soluble in a lot of polymers. It attaches to the particles so they don’t attach to each other, and helps disperse the particles throughout the polymer. It is a benign, natural substance," Baird said.

The rheological properties including the normal stresses (elastic properties) and the stress relaxation response are used to monitor particle dispersion.

The researchers also have discovered that the changed flow behavior is good news – an indication that the material will exhibit improved mechanical properties.

Baird’s team observed that nano clay particles well dispersed in polypropylene and polycarbonate plastics tend to promote polymer chain orientation, or alignment, and then retard relaxation or loss of orientation. "The result is they make the polymer chains act like longer or higher molecular weight chains. The material is stronger than one would expect given the size of a polymer chain."

Pointing to a bobbin of fiber, Baird said, "If that contained nano particles and was stretched, it is possible that the fiber could be woven into a vest that would stop a bullet. An ordinary polymer material with well dispersed high levels (8 wt%) of nano particles could have exceptional mechanical properties."

He will present the paper, "Effects of nano clay particles on non-linear rheology of polymer melts (Poly 248)" at 11:20 a.m. Monday, Aug. 29, in the Grand Hyatt Constitution room D-E, as part of the Herman Mark Award program honoring Don Paul.

Susan Trulove | EurekAlert!
Further information:
http://www.che.vt.edu/baird/baird.htm
http://www.vt.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>