Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Make Stronger Platinum Jewelry, Add a Little Chromium

25.07.2005


Student’s Testing Identifies Metal Mix with Superior Mechanical Properties


This lab setup enabled a Johns Hopkins undergraduate to test the mechanical properties of platinum alloys.



Using a high-tech but low-cost technique, a Johns Hopkins undergraduate has tested tiny samples of four metal alloys to find the best blend for use in platinum jewelry. After evaluating four metal mixtures, student researcher Christopher Kovalchick determined that platinum combined with a small amount of chromium in a cold-rolled and heat treatment process displayed the greatest strength.

The finding is important because pure platinum is too soft for use in a durable piece of jewelry. Yet many countries mandate that platinum jewelry must contain at least 95 percent of the precious metal by weight. With just 5 percent left to work with, jewelers are looking for the best platinum blend to produce strong and durable products. The mechanical properties of these alloys, such as hardness and elasticity, can also be altered through heat treatment and cold-rolling techniques.


Kovalchick’s testing method, pioneered by his faculty advisor, helped him keep costs low because it used ultra- thin samples, each smaller than a child’s thumbnail, rather than the large, expensive chunks required in conventional testing. The engineering mechanics major estimated that each platinum alloy microsample used in his tests cost $200. A traditional platinum-based test sample, measuring about 10 inches long, 1 inch wide and a half- inch thick, would cost nearly $50,000, the student said. "This is a very useful technique," Kovalchick said. "It’s less expensive, but what we learn from the microsamples will also apply to larger amounts of the material."

His presentation on platinum testing won first-place in the student competition at the annual conference of the Society for Experimental Mechanics, held recently in Portland, Ore. Kovalchick, a Hamilton, N.J., resident who will begin his senior year at Johns Hopkins in the fall, was the only undergraduate entrant, requiring him to compete against 17 graduate students.

His project began in March 2004, when Kovalchick asked William N. Sharpe Jr. to sponsor him in applying for an undergraduate research grant offered by the university. Sharpe, the university’s Alonzo G. Decker Professor of Mechanical Engineering, is an internationally recognized leader in microsample testing. The professor proposed a collaboration with the Centre for Materials Engineering at the University of Cape Town, South Africa, where researchers wanted an independent lab to test platinum alloys. South Africa is a leading source of platinum and boasts a growing platinum jewelry industry.

The Cape Town researchers sent 32 specimens of four alloys for testing by Kovalchick under Sharpe’s supervision. Each sample was only 200 to 400 microns thick, roughly three or four times the thickness of a human hair. For testing purposes, each was shaped like a tiny dog biscuit, about 3 centimeters long.

Each microsample was placed carefully between two grips. A motor pulled on one end, and a device called a 50-pound load cell measured the amount of force the sample withstood before breaking. The researchers also measured strain, the metal’s ability to stretch without breaking. This was done by a technique invented by Sharpe called interferometric strain/displacement gage. In this method, a laser is aimed at two small indentations in the metal specimen. The light bounces off the indentations, producing patterns that change as the metal is stretched. These changes, captured by photosensors, give the researchers data to measure the strain characteristics.

Kovalchick tested four alloys: a cold-rolled platinum blend containing 5 percent copper; a cold-rolled platinum blend containing 3.2 percent chromium; a 3.2 percent platinum-chromium blend that was cold-rolled and then heated to 300 degree Centigrade for three hours; and a 3.2 percent platinum-chromium blend that was recrystalized by heating it for six hours at 800 degrees Centigrade.

The student researcher determined that among these alloys, the platinum-chromium mix that underwent cold- rolling and three hours of heating displayed the greatest strength. The recrystalized alloy was the weakest. His detailed findings will be given to researchers in South Africa and are expected to be the focus of a scientific journal article.

"Because each microspecimen was a little different, this project turned out to be more involved and more complicated than we’d ever anticipated," said Sharpe, Kovalchick’s faculty advisor. "But Chris finished the work, and he gave a fine presentation before the judges at the student competition."

Kovalchick said he was well prepared because Sharpe and other Johns Hopkins engineering professors had grilled him with questions during a meeting before the science conference. "It was a great learning experience," the student said. "This is what Hopkins prides itself on — giving undergraduates a chance to do research. This will give me a leg up when I go to grad school."

His project was supported by a Provost’s Undergraduate Research Award from Johns Hopkins.

In addition to his engineering studies, Kovalchick is pursuing a second degree in violin performance at the Peabody Conservatory of Johns Hopkins. During his freshman and sophomore year, he was concertmaster of the Peabody Concert Orchestra. He is currently a principal in the Peabody Symphony Orchestra.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>