Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Make Stronger Platinum Jewelry, Add a Little Chromium

25.07.2005


Student’s Testing Identifies Metal Mix with Superior Mechanical Properties


This lab setup enabled a Johns Hopkins undergraduate to test the mechanical properties of platinum alloys.



Using a high-tech but low-cost technique, a Johns Hopkins undergraduate has tested tiny samples of four metal alloys to find the best blend for use in platinum jewelry. After evaluating four metal mixtures, student researcher Christopher Kovalchick determined that platinum combined with a small amount of chromium in a cold-rolled and heat treatment process displayed the greatest strength.

The finding is important because pure platinum is too soft for use in a durable piece of jewelry. Yet many countries mandate that platinum jewelry must contain at least 95 percent of the precious metal by weight. With just 5 percent left to work with, jewelers are looking for the best platinum blend to produce strong and durable products. The mechanical properties of these alloys, such as hardness and elasticity, can also be altered through heat treatment and cold-rolling techniques.


Kovalchick’s testing method, pioneered by his faculty advisor, helped him keep costs low because it used ultra- thin samples, each smaller than a child’s thumbnail, rather than the large, expensive chunks required in conventional testing. The engineering mechanics major estimated that each platinum alloy microsample used in his tests cost $200. A traditional platinum-based test sample, measuring about 10 inches long, 1 inch wide and a half- inch thick, would cost nearly $50,000, the student said. "This is a very useful technique," Kovalchick said. "It’s less expensive, but what we learn from the microsamples will also apply to larger amounts of the material."

His presentation on platinum testing won first-place in the student competition at the annual conference of the Society for Experimental Mechanics, held recently in Portland, Ore. Kovalchick, a Hamilton, N.J., resident who will begin his senior year at Johns Hopkins in the fall, was the only undergraduate entrant, requiring him to compete against 17 graduate students.

His project began in March 2004, when Kovalchick asked William N. Sharpe Jr. to sponsor him in applying for an undergraduate research grant offered by the university. Sharpe, the university’s Alonzo G. Decker Professor of Mechanical Engineering, is an internationally recognized leader in microsample testing. The professor proposed a collaboration with the Centre for Materials Engineering at the University of Cape Town, South Africa, where researchers wanted an independent lab to test platinum alloys. South Africa is a leading source of platinum and boasts a growing platinum jewelry industry.

The Cape Town researchers sent 32 specimens of four alloys for testing by Kovalchick under Sharpe’s supervision. Each sample was only 200 to 400 microns thick, roughly three or four times the thickness of a human hair. For testing purposes, each was shaped like a tiny dog biscuit, about 3 centimeters long.

Each microsample was placed carefully between two grips. A motor pulled on one end, and a device called a 50-pound load cell measured the amount of force the sample withstood before breaking. The researchers also measured strain, the metal’s ability to stretch without breaking. This was done by a technique invented by Sharpe called interferometric strain/displacement gage. In this method, a laser is aimed at two small indentations in the metal specimen. The light bounces off the indentations, producing patterns that change as the metal is stretched. These changes, captured by photosensors, give the researchers data to measure the strain characteristics.

Kovalchick tested four alloys: a cold-rolled platinum blend containing 5 percent copper; a cold-rolled platinum blend containing 3.2 percent chromium; a 3.2 percent platinum-chromium blend that was cold-rolled and then heated to 300 degree Centigrade for three hours; and a 3.2 percent platinum-chromium blend that was recrystalized by heating it for six hours at 800 degrees Centigrade.

The student researcher determined that among these alloys, the platinum-chromium mix that underwent cold- rolling and three hours of heating displayed the greatest strength. The recrystalized alloy was the weakest. His detailed findings will be given to researchers in South Africa and are expected to be the focus of a scientific journal article.

"Because each microspecimen was a little different, this project turned out to be more involved and more complicated than we’d ever anticipated," said Sharpe, Kovalchick’s faculty advisor. "But Chris finished the work, and he gave a fine presentation before the judges at the student competition."

Kovalchick said he was well prepared because Sharpe and other Johns Hopkins engineering professors had grilled him with questions during a meeting before the science conference. "It was a great learning experience," the student said. "This is what Hopkins prides itself on — giving undergraduates a chance to do research. This will give me a leg up when I go to grad school."

His project was supported by a Provost’s Undergraduate Research Award from Johns Hopkins.

In addition to his engineering studies, Kovalchick is pursuing a second degree in violin performance at the Peabody Conservatory of Johns Hopkins. During his freshman and sophomore year, he was concertmaster of the Peabody Concert Orchestra. He is currently a principal in the Peabody Symphony Orchestra.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>