Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Make Stronger Platinum Jewelry, Add a Little Chromium

25.07.2005


Student’s Testing Identifies Metal Mix with Superior Mechanical Properties


This lab setup enabled a Johns Hopkins undergraduate to test the mechanical properties of platinum alloys.



Using a high-tech but low-cost technique, a Johns Hopkins undergraduate has tested tiny samples of four metal alloys to find the best blend for use in platinum jewelry. After evaluating four metal mixtures, student researcher Christopher Kovalchick determined that platinum combined with a small amount of chromium in a cold-rolled and heat treatment process displayed the greatest strength.

The finding is important because pure platinum is too soft for use in a durable piece of jewelry. Yet many countries mandate that platinum jewelry must contain at least 95 percent of the precious metal by weight. With just 5 percent left to work with, jewelers are looking for the best platinum blend to produce strong and durable products. The mechanical properties of these alloys, such as hardness and elasticity, can also be altered through heat treatment and cold-rolling techniques.


Kovalchick’s testing method, pioneered by his faculty advisor, helped him keep costs low because it used ultra- thin samples, each smaller than a child’s thumbnail, rather than the large, expensive chunks required in conventional testing. The engineering mechanics major estimated that each platinum alloy microsample used in his tests cost $200. A traditional platinum-based test sample, measuring about 10 inches long, 1 inch wide and a half- inch thick, would cost nearly $50,000, the student said. "This is a very useful technique," Kovalchick said. "It’s less expensive, but what we learn from the microsamples will also apply to larger amounts of the material."

His presentation on platinum testing won first-place in the student competition at the annual conference of the Society for Experimental Mechanics, held recently in Portland, Ore. Kovalchick, a Hamilton, N.J., resident who will begin his senior year at Johns Hopkins in the fall, was the only undergraduate entrant, requiring him to compete against 17 graduate students.

His project began in March 2004, when Kovalchick asked William N. Sharpe Jr. to sponsor him in applying for an undergraduate research grant offered by the university. Sharpe, the university’s Alonzo G. Decker Professor of Mechanical Engineering, is an internationally recognized leader in microsample testing. The professor proposed a collaboration with the Centre for Materials Engineering at the University of Cape Town, South Africa, where researchers wanted an independent lab to test platinum alloys. South Africa is a leading source of platinum and boasts a growing platinum jewelry industry.

The Cape Town researchers sent 32 specimens of four alloys for testing by Kovalchick under Sharpe’s supervision. Each sample was only 200 to 400 microns thick, roughly three or four times the thickness of a human hair. For testing purposes, each was shaped like a tiny dog biscuit, about 3 centimeters long.

Each microsample was placed carefully between two grips. A motor pulled on one end, and a device called a 50-pound load cell measured the amount of force the sample withstood before breaking. The researchers also measured strain, the metal’s ability to stretch without breaking. This was done by a technique invented by Sharpe called interferometric strain/displacement gage. In this method, a laser is aimed at two small indentations in the metal specimen. The light bounces off the indentations, producing patterns that change as the metal is stretched. These changes, captured by photosensors, give the researchers data to measure the strain characteristics.

Kovalchick tested four alloys: a cold-rolled platinum blend containing 5 percent copper; a cold-rolled platinum blend containing 3.2 percent chromium; a 3.2 percent platinum-chromium blend that was cold-rolled and then heated to 300 degree Centigrade for three hours; and a 3.2 percent platinum-chromium blend that was recrystalized by heating it for six hours at 800 degrees Centigrade.

The student researcher determined that among these alloys, the platinum-chromium mix that underwent cold- rolling and three hours of heating displayed the greatest strength. The recrystalized alloy was the weakest. His detailed findings will be given to researchers in South Africa and are expected to be the focus of a scientific journal article.

"Because each microspecimen was a little different, this project turned out to be more involved and more complicated than we’d ever anticipated," said Sharpe, Kovalchick’s faculty advisor. "But Chris finished the work, and he gave a fine presentation before the judges at the student competition."

Kovalchick said he was well prepared because Sharpe and other Johns Hopkins engineering professors had grilled him with questions during a meeting before the science conference. "It was a great learning experience," the student said. "This is what Hopkins prides itself on — giving undergraduates a chance to do research. This will give me a leg up when I go to grad school."

His project was supported by a Provost’s Undergraduate Research Award from Johns Hopkins.

In addition to his engineering studies, Kovalchick is pursuing a second degree in violin performance at the Peabody Conservatory of Johns Hopkins. During his freshman and sophomore year, he was concertmaster of the Peabody Concert Orchestra. He is currently a principal in the Peabody Symphony Orchestra.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>