Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Tall’ crystals from tiny templates

21.07.2005


Ames Lab Researchers Modify Old Technique to Make 3-D Multilayered Structures



Achieving a first in the world of novel optical materials, researchers at the U. S. Department of Energy’s Ames Laboratory are making 3-D photonic band gap crystals four millimeters square (approximately one-eighth of an inch square) and 12 layers high without benefit of a “clean room” environment or the multimillion dollar equipment traditionally required to create such structures. The fundamental research, supported by the Basic Energy Sciences Office of the DOE’s Office of Science, holds potential for significantly reducing the costs associated with fabricating PBG crystals, devices that make it possible to route, manipulate and modify the properties of light.

PBG crystals can permit or block the transmission of light of certain frequencies in all directions. This characteristic makes them especially promising for applications in the field of optical communications, where the push is on to create a photonic crystal within a single computer chip.


The research path to that goal is an unbelievably expensive one. But Kai-Ming Ho, an Ames Laboratory senior physicist, and Kristen Constant, an Iowa State University associate professor of materials science and engineering, and their co-workers are easing the way by fabricating PBG crystal microstructures in the open air, something that has never been done before.

The project is based on Ho’s original 1990 research that theoretically demonstrated the existence of the first PBG crystal through his diamond lattice structure design.

That unique design is key to the multilayered PBGs that are being fabricated by members of Ho’s and Constant’s research groups. They have adapted a technique called microtransfer molding to make templates for the fabrication of multilayered photonic band gap crystals.

“The microtransfer mold technique is not new,” said Ho, who is also an ISU distinguished professor of physics and astronomy. “Modifying it to create multilevel lattice structures at micron- and submicron-length scales – that is the new advance.”

The modified technique involves meticulous work at the micron-scale level. (For size reference, the period at the end of this sentence equals approximately 615 microns.) First, an elastomer mold is created with more than 1,000 microchannels on its surface. The channels are filled by hand with a liquid polymer filler. The filler is then solidified by ultraviolet light. Next, the solidified polymer rods in the channels are coated with a second polymer that acts as a glue, bonding the filler to a silicon wafer substrate. Once hardened, the elastomer mold is peeled off, leaving a set of parallel polymer rods on the substrate – one layer of the polymer template. By repeating the procedure, in principle, any number of multilayer structures is achievable. To convert the template to a ceramic photonic crystal, the template is over-infiltrated with a titania slurry. The structure is fired to 550 degrees Celsius (1022 F) to remove the template and sinter the titania structure.

Ho and Constant credit many of the fabrication advances to the unique skills of the young scientists they mentor: postdoctoral fellow Chang-Hwan Kim; current graduate students Jae-Hwang Lee, Yong-Sung Kim, and Ping Kuang; and former graduate student Henry Kang, now at Hewlett Packard in Oregon. They are conquering what is perhaps the biggest challenge – aligning the multiple layers that make up the PBG crystals.

The 1,000 plus rods per layer in a four-millimeter-square PBG crystal are only 2.5 microns apart. “The placement of each rod is so precise,” said Constant. “It’s hard to imagine that we can put something down within a micron or half a micron.”

Ho added, “If you make a mistake in one layer, it will disrupt the next one and spoil the rest of the sample. In order to build multilayers, you need to get things right successively.”

Lee knows the kind of concentration that requires. He has constructed a 12-layer template for a PBG crystal and modestly admitted, “I can stack more than this; however, it will task my patience!”

To improve the alignment, Lee and Chang-Hwan Kim came up with an ingenious method based on diffracted moiré fringes that has proven indispensable. Ho explained, “Photonic crystals are periodic structures, so any shifts in periodicity will show up over a much larger area. Those shifts are called fringes,” he said. The better the alignment, the farther apart those fringes are spaced, so the fringe pattern tells you how good the alignment is.”

Constant praised the project’s blended research team of physicists and materials scientists. “We’ve established an expertise with microtransfer molding. When people hear that we’re doing this in open air, it really amazes them. It amazes me, too,” she admitted, “especially when you realize that a speck of dust can disrupt the whole structure.”

Ho noted that the care and expertise of the project’s team members was overcoming the open-air obstacles. “It’s a high-quality, low-cost process – that’s the key – and it’s achieved by a lot of engineering ingenuity,” he said.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>