Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Tall’ crystals from tiny templates


Ames Lab Researchers Modify Old Technique to Make 3-D Multilayered Structures

Achieving a first in the world of novel optical materials, researchers at the U. S. Department of Energy’s Ames Laboratory are making 3-D photonic band gap crystals four millimeters square (approximately one-eighth of an inch square) and 12 layers high without benefit of a “clean room” environment or the multimillion dollar equipment traditionally required to create such structures. The fundamental research, supported by the Basic Energy Sciences Office of the DOE’s Office of Science, holds potential for significantly reducing the costs associated with fabricating PBG crystals, devices that make it possible to route, manipulate and modify the properties of light.

PBG crystals can permit or block the transmission of light of certain frequencies in all directions. This characteristic makes them especially promising for applications in the field of optical communications, where the push is on to create a photonic crystal within a single computer chip.

The research path to that goal is an unbelievably expensive one. But Kai-Ming Ho, an Ames Laboratory senior physicist, and Kristen Constant, an Iowa State University associate professor of materials science and engineering, and their co-workers are easing the way by fabricating PBG crystal microstructures in the open air, something that has never been done before.

The project is based on Ho’s original 1990 research that theoretically demonstrated the existence of the first PBG crystal through his diamond lattice structure design.

That unique design is key to the multilayered PBGs that are being fabricated by members of Ho’s and Constant’s research groups. They have adapted a technique called microtransfer molding to make templates for the fabrication of multilayered photonic band gap crystals.

“The microtransfer mold technique is not new,” said Ho, who is also an ISU distinguished professor of physics and astronomy. “Modifying it to create multilevel lattice structures at micron- and submicron-length scales – that is the new advance.”

The modified technique involves meticulous work at the micron-scale level. (For size reference, the period at the end of this sentence equals approximately 615 microns.) First, an elastomer mold is created with more than 1,000 microchannels on its surface. The channels are filled by hand with a liquid polymer filler. The filler is then solidified by ultraviolet light. Next, the solidified polymer rods in the channels are coated with a second polymer that acts as a glue, bonding the filler to a silicon wafer substrate. Once hardened, the elastomer mold is peeled off, leaving a set of parallel polymer rods on the substrate – one layer of the polymer template. By repeating the procedure, in principle, any number of multilayer structures is achievable. To convert the template to a ceramic photonic crystal, the template is over-infiltrated with a titania slurry. The structure is fired to 550 degrees Celsius (1022 F) to remove the template and sinter the titania structure.

Ho and Constant credit many of the fabrication advances to the unique skills of the young scientists they mentor: postdoctoral fellow Chang-Hwan Kim; current graduate students Jae-Hwang Lee, Yong-Sung Kim, and Ping Kuang; and former graduate student Henry Kang, now at Hewlett Packard in Oregon. They are conquering what is perhaps the biggest challenge – aligning the multiple layers that make up the PBG crystals.

The 1,000 plus rods per layer in a four-millimeter-square PBG crystal are only 2.5 microns apart. “The placement of each rod is so precise,” said Constant. “It’s hard to imagine that we can put something down within a micron or half a micron.”

Ho added, “If you make a mistake in one layer, it will disrupt the next one and spoil the rest of the sample. In order to build multilayers, you need to get things right successively.”

Lee knows the kind of concentration that requires. He has constructed a 12-layer template for a PBG crystal and modestly admitted, “I can stack more than this; however, it will task my patience!”

To improve the alignment, Lee and Chang-Hwan Kim came up with an ingenious method based on diffracted moiré fringes that has proven indispensable. Ho explained, “Photonic crystals are periodic structures, so any shifts in periodicity will show up over a much larger area. Those shifts are called fringes,” he said. The better the alignment, the farther apart those fringes are spaced, so the fringe pattern tells you how good the alignment is.”

Constant praised the project’s blended research team of physicists and materials scientists. “We’ve established an expertise with microtransfer molding. When people hear that we’re doing this in open air, it really amazes them. It amazes me, too,” she admitted, “especially when you realize that a speck of dust can disrupt the whole structure.”

Ho noted that the care and expertise of the project’s team members was overcoming the open-air obstacles. “It’s a high-quality, low-cost process – that’s the key – and it’s achieved by a lot of engineering ingenuity,” he said.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>