Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material Could Improve Fabrication of Nanoscale Components

24.06.2005


A team of chemists at Penn State has developed a new type of ultrathin film, which has unusual properties that could improve the fabrication of increasingly smaller and more intricate electronic and sensing devices. The material, a single layer made from spherical cages of carbon atoms, could enable more precise patterning of such devices with a wider range of molecular components than now is possible with conventional self-assembled monolayers. The research is published in the current issue of the Journal of the American Chemical Society.



The molecules that make up the material have larger spaces and weaker connections between them than do components of conventional self-assembled monolayers. "The bonding and structural characteristics of this monolayer give us the opportunity to replace its molecules with different molecules very easily, which opens up lots of possibilities for both directed patterning and self-assembled patterning," says Paul S. Weiss, professor of chemistry and physics.

One of the advantages of Weiss’s new monolayer material is that the characteristics of its high-quality structure can improve the precision of the lithography process in the fabrication of nanoscale devices. In this process, the monolayer sheet would sit on a gold substrate, to which other kinds of molecules bind after they displace some of the original monolayer’s carbon molecules. The molecules of the original monolayer then can function as a kind of corral to keep the replacement molecules from wandering. This controlling structure is an improvement over conventional methods, during which patterns deposited on a bare gold surface have a tendency to spread by diffusion.


"Because weak interactions hold them in place, the monolayer molecules can serve as easy-to-displace placeholders for other more strongly interacting molecules," Weiss explains. "This property expands the range of molecules that can be incorporated into the monolayer structure."

In addition to Weiss, the research team includes Penn State graduate students Arrelaine A. Dameron and Lyndon F. Charles. This research was supported by the Air Force Office of Scientific Research, Army Research Office, Defense Advanced Research Projects Agency, National Science Foundation, Office of Naval Research, and Semiconductor Research Corporation.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>