Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New magnetic techniques for microstructural characterisation of steels


There is no doubt that steel is one of the materials that has largely contributed to the technological and economical development of the twentieth century. Its mechanical and magnetic properties are determined by its chemical composition and the microstructure obtained in its manufacturing process. Traditionally, it has been necessary to mechanically destroy the material in order to analyze its microstructure by means of a microscope, i.e. to get a small sample, to polish it and to attack it with chemical compounds. Nowadays, significant progress is being made to magnetically obtain information about steel’s microstructure. Besides, due to their non-destructive nature, magnetic techniques allow us to skip destructive mechanical techniques.

In this context, the aim of the doctoral thesis was to design an electronic system capable of determining microstructure variations in steels by means of magnetic non-destructive techniques. In the research a thorough analysis of the signals obtained by means of these techniques was made, which led to the definition of several useful parameters for the characterisation of the microstructure and mechanical properties of steels. These new techniques are based on the following principle: The steel is formed by microscopic regions called magnetic domains. When a magnetic field is applied to the material, these domains tend to grow and their walls find microstructural obstacles in their movement, such as dislocations, grain boundaries, or precipitates, which hinder their growth.

The thesis proposes a measurement system that provides several representative parameters of the movement of the magnetic domain walls. By means of this system the magnetic domains of the material themselves are used as internal sensors that record the characteristics of the microstructure. With this method it is possible to determine whether the material has a high or low dislocation density, the way in which dislocations arrange themselves, whether the material has grain boundaries or precipitates etc.

In order to evaluate the system’s sensitivity, measurements were made on low carbon steel samples with various microstructures. Its sensitivity to plastic deformation was analysed and parameters with enough resolution were obtained to quantitatively investigate the evolution of the microstructure during the thermal treatment applied to the cold rolled steels. Specifically, during the metallurgical processes of recovery and recrystallization. It is remarkable that by means of these techniques recovery processes, which are not detectable by means of traditional techniques such as hardness measurements or optical metallography, can be monitored.

This doctoral thesis opens up new technological possibilities in the field of magnetic non-destructive testing techniques applied to microstructural characterization of steels. Some significant results have been published in international journals, such as Acta Materialia and Materials Science Forum.

Garazi Andonegi | alfa
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>