Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists perform ’materials magic’ to simplify crystal-making for electronics

31.05.2005


Materials scientists at Rutgers, The State University of New Jersey, have devised a novel and easy technique to make thin, crystal-like materials for electronic devices. The technique could supplement today’s tedious and exacting method of growing crystals with an additional benefit of producing materials in sizes and shapes not now possible.



In a recent issue of the American Chemical Society journal Langmuir, Rutgers scientists and collaborators from Ceramare Corporation and the University of California, Berkeley, report on a method where they coax thousands of microscopic grains of individual crystals to assemble into tightly packed layers. The resulting orderly array of particles mimics the performance of traditionally fabricated crystalline wafers, without the time and expense of growing crystals in a molten mixture or solution, then slicing them into thin layers.

"The materials we’ve created in our lab bridge the gap between single-crystal materials, with their precisely ordered atomic structures, and ceramics, which have randomly oriented structures," said Richard Riman, professor of ceramic and materials engineering. "These so-called ’single-crystal-like’ materials possess properties approaching those of true single crystal materials, but since we make them with techniques drawn from ceramic fabrication, there is potential to synthesize them economically and in large size and quantity."


Riman and his colleagues conducted their research with lead zirconate titanate, or PZT, which is used in motion sensors, electrical capacitors and even for vibration damping in high-performance skis and tennis racquets. PZT has proven almost impossible to fabricate as a single crystal, which limits practical applications to the material’s polycrystalline form; that is, a solid mixture of small crystalline particles. Even the most sophisticated lab techniques have produced crystals no larger than a quarter-inch across. A number of new applications in sensing, imaging and energy storage appear possible if the material can be fabricated in a variety of sizes and shapes with the highly ordered atomic structure of crystals.

The Rutgers-led team created PZT particles using chemical processes, forming cubes of uniform shape and size, between two and three microns on a side (almost 50 times smaller than a grain of table salt). The team then made a slurry of PZT cubes in an alcohol and mineral oil mixture and placed droplets of the slurry on a water surface. Various forces, including the water’s surface tension, caused the cubes to "self-assemble" into a densely packed single layer. The scientists then picked up the array of cubes onto a glass tube or microscope slide, resulting in a thin layer of crystal-like PZT.

Using a sophisticated technique called atomic force microscopy, the scientists measured piezoelectric properties, or the ability to generate electricity by causing vibrations, in the PZT array. They found it had properties comparable to that of a true single-crystal structure. While additional work will be needed to make the fabrication process practical for large-scale production, the research suggests it will be possible to make materials with unique shapes and properties.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>