Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists perform ’materials magic’ to simplify crystal-making for electronics

31.05.2005


Materials scientists at Rutgers, The State University of New Jersey, have devised a novel and easy technique to make thin, crystal-like materials for electronic devices. The technique could supplement today’s tedious and exacting method of growing crystals with an additional benefit of producing materials in sizes and shapes not now possible.



In a recent issue of the American Chemical Society journal Langmuir, Rutgers scientists and collaborators from Ceramare Corporation and the University of California, Berkeley, report on a method where they coax thousands of microscopic grains of individual crystals to assemble into tightly packed layers. The resulting orderly array of particles mimics the performance of traditionally fabricated crystalline wafers, without the time and expense of growing crystals in a molten mixture or solution, then slicing them into thin layers.

"The materials we’ve created in our lab bridge the gap between single-crystal materials, with their precisely ordered atomic structures, and ceramics, which have randomly oriented structures," said Richard Riman, professor of ceramic and materials engineering. "These so-called ’single-crystal-like’ materials possess properties approaching those of true single crystal materials, but since we make them with techniques drawn from ceramic fabrication, there is potential to synthesize them economically and in large size and quantity."


Riman and his colleagues conducted their research with lead zirconate titanate, or PZT, which is used in motion sensors, electrical capacitors and even for vibration damping in high-performance skis and tennis racquets. PZT has proven almost impossible to fabricate as a single crystal, which limits practical applications to the material’s polycrystalline form; that is, a solid mixture of small crystalline particles. Even the most sophisticated lab techniques have produced crystals no larger than a quarter-inch across. A number of new applications in sensing, imaging and energy storage appear possible if the material can be fabricated in a variety of sizes and shapes with the highly ordered atomic structure of crystals.

The Rutgers-led team created PZT particles using chemical processes, forming cubes of uniform shape and size, between two and three microns on a side (almost 50 times smaller than a grain of table salt). The team then made a slurry of PZT cubes in an alcohol and mineral oil mixture and placed droplets of the slurry on a water surface. Various forces, including the water’s surface tension, caused the cubes to "self-assemble" into a densely packed single layer. The scientists then picked up the array of cubes onto a glass tube or microscope slide, resulting in a thin layer of crystal-like PZT.

Using a sophisticated technique called atomic force microscopy, the scientists measured piezoelectric properties, or the ability to generate electricity by causing vibrations, in the PZT array. They found it had properties comparable to that of a true single-crystal structure. While additional work will be needed to make the fabrication process practical for large-scale production, the research suggests it will be possible to make materials with unique shapes and properties.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>