Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New alloy verified for safer disposal of spent nuclear energy fuel

05.04.2005


Scientists verify critical fabrication properties of gadolinium-nickel alloy



A new alloy developed and patented by researchers at Lehigh University, Sandia National Laboratory and Idaho National Laboratory could help the U.S. dispose more safely of 50,000 tons of spent nuclear energy fuel that are now stored at 125 sites in 39 states.
John DuPont, professor of materials science and engineering at Lehigh and principal investigator on the project, said that a nickel-based alloy with added gadolinium showed far greater ability than any other alloy to absorb the deadly radioactive neutrons emitted by nuclear waste.

The researchers found that the gadolinium-nickel alloy passed an important test - it can be fabricated in large quantities using conventional ingot metallurgy and fusion welding techniques.



The researchers’ discovery, which was announced in an article in the December 2004 issue of the American Welding Society’s Welding Journal, caps a four-year study funded by the U.S. Department of Energy’s (DOE) Spent Nuclear Fuel Program.

The article, titled "Physical and Welding Metallurgy of Gadolinium-enriched Austenitic Alloys for Spent Nuclear Fuel Applications - Part II," won the society’s Warren F. Savage Award for advancing the understanding of welding metallurgy.

The article comes amidst a controversy over plans by the Bush Administration and Congress to transport the nation’s spent nuclear fuel to Nevada and deposit it inside Yucca Mountain about 90 miles northwest of Las Vegas.

In 2002, over the objections of Nevada Governor Kenny Guinn, Congress passed, and President Bush signed into law a resolution approving Yucca Mountain as the storage site for the nation’s spent nuclear fuel.

DOE’s application for a license to build the project is pending before the federal Nuclear Regulatory Commission. The state of Nevada, contending that the Yucca Mountain project is environmentally and geologically unsafe, has filed lawsuits against DOE, NRC, Bush and former DOE Secretary Spencer Abraham.

Gadolinium, a silvery-white metal. occurs naturally in several different minerals. The collaborative research conducted by Lehigh and the two national labs demonstrated that gadolinium can be added to specific nickel alloys and retain its malleability and ductility, as well as its ability to be heat-treated, shaped and fabricated readily into a desired shape.

More importantly, says DuPont, gadolinium has a neutron-absorption cross- section of 48,800 barn units, more than 60 times greater than the 765-barn cross-section for boron. (Cross-section, the measure of the probability of an interaction between a particle and a target nucleus, is expressed in barn units, with one barn equal to 10-24 cm2.) Borated stainless steel is the material commonly used in conventional nuclear-waste containers. However, borated stainless steel is not capable of housing some of the nations highly radioactive spent fuel.

The higher neutron-absorption capacity of gadolinium, says DuPont, means that highly radioactive fuel can now be safely transported to and stored at a permanent facility.

The research group, which includes DuPont at Lehigh and scientists from Sandia National Laboratories in New Mexico and the Idaho National Laboratory (formerly the Idaho National Engineering and Environmental Laboratory), conducted laboratory tests to determine the optimum amount of gadolinium to add to the nickel-based alloy.

The tests involved mixing the constituent elements of the alloy, heating and melting the mixture, and allowing it to cool and solidify. The alloy was then heated and rolled into half-inch-thick sheets, and subjected to strength and ductility tests.

"We designed and developed various alloys to determine the quantity of gadolinium that could be added while still maintaining the desired properties," says DuPont. "We needed to be able to heat-treat the final material, weld it and fabricate it."

A specification has been approved for the alloy by ASTM (the American Society of Testing Materials), which sets technical standards for materials, products, systems and services. The alloy is being reviewed by the American Society of Mechanical Engineers, which also sets standards for the use of new products. Neutronics (neutron-absorption) tests on the alloy were performed at Lawrence Livermore National Laboratory in California.

The research team was awarded a U.S. patent for the alloy last year.

Prior to its work with the gadolinium-nickel alloy, the researchers spent a year investigating gadolinium-enriched stainless-steel alloys for spent nuclear fuel storage applications before coming up against major obstacles to the production of those alloys using conventional hot working techniques.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>