Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New alloy verified for safer disposal of spent nuclear energy fuel

05.04.2005


Scientists verify critical fabrication properties of gadolinium-nickel alloy



A new alloy developed and patented by researchers at Lehigh University, Sandia National Laboratory and Idaho National Laboratory could help the U.S. dispose more safely of 50,000 tons of spent nuclear energy fuel that are now stored at 125 sites in 39 states.
John DuPont, professor of materials science and engineering at Lehigh and principal investigator on the project, said that a nickel-based alloy with added gadolinium showed far greater ability than any other alloy to absorb the deadly radioactive neutrons emitted by nuclear waste.

The researchers found that the gadolinium-nickel alloy passed an important test - it can be fabricated in large quantities using conventional ingot metallurgy and fusion welding techniques.



The researchers’ discovery, which was announced in an article in the December 2004 issue of the American Welding Society’s Welding Journal, caps a four-year study funded by the U.S. Department of Energy’s (DOE) Spent Nuclear Fuel Program.

The article, titled "Physical and Welding Metallurgy of Gadolinium-enriched Austenitic Alloys for Spent Nuclear Fuel Applications - Part II," won the society’s Warren F. Savage Award for advancing the understanding of welding metallurgy.

The article comes amidst a controversy over plans by the Bush Administration and Congress to transport the nation’s spent nuclear fuel to Nevada and deposit it inside Yucca Mountain about 90 miles northwest of Las Vegas.

In 2002, over the objections of Nevada Governor Kenny Guinn, Congress passed, and President Bush signed into law a resolution approving Yucca Mountain as the storage site for the nation’s spent nuclear fuel.

DOE’s application for a license to build the project is pending before the federal Nuclear Regulatory Commission. The state of Nevada, contending that the Yucca Mountain project is environmentally and geologically unsafe, has filed lawsuits against DOE, NRC, Bush and former DOE Secretary Spencer Abraham.

Gadolinium, a silvery-white metal. occurs naturally in several different minerals. The collaborative research conducted by Lehigh and the two national labs demonstrated that gadolinium can be added to specific nickel alloys and retain its malleability and ductility, as well as its ability to be heat-treated, shaped and fabricated readily into a desired shape.

More importantly, says DuPont, gadolinium has a neutron-absorption cross- section of 48,800 barn units, more than 60 times greater than the 765-barn cross-section for boron. (Cross-section, the measure of the probability of an interaction between a particle and a target nucleus, is expressed in barn units, with one barn equal to 10-24 cm2.) Borated stainless steel is the material commonly used in conventional nuclear-waste containers. However, borated stainless steel is not capable of housing some of the nations highly radioactive spent fuel.

The higher neutron-absorption capacity of gadolinium, says DuPont, means that highly radioactive fuel can now be safely transported to and stored at a permanent facility.

The research group, which includes DuPont at Lehigh and scientists from Sandia National Laboratories in New Mexico and the Idaho National Laboratory (formerly the Idaho National Engineering and Environmental Laboratory), conducted laboratory tests to determine the optimum amount of gadolinium to add to the nickel-based alloy.

The tests involved mixing the constituent elements of the alloy, heating and melting the mixture, and allowing it to cool and solidify. The alloy was then heated and rolled into half-inch-thick sheets, and subjected to strength and ductility tests.

"We designed and developed various alloys to determine the quantity of gadolinium that could be added while still maintaining the desired properties," says DuPont. "We needed to be able to heat-treat the final material, weld it and fabricate it."

A specification has been approved for the alloy by ASTM (the American Society of Testing Materials), which sets technical standards for materials, products, systems and services. The alloy is being reviewed by the American Society of Mechanical Engineers, which also sets standards for the use of new products. Neutronics (neutron-absorption) tests on the alloy were performed at Lawrence Livermore National Laboratory in California.

The research team was awarded a U.S. patent for the alloy last year.

Prior to its work with the gadolinium-nickel alloy, the researchers spent a year investigating gadolinium-enriched stainless-steel alloys for spent nuclear fuel storage applications before coming up against major obstacles to the production of those alloys using conventional hot working techniques.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>