Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New alloy verified for safer disposal of spent nuclear energy fuel

05.04.2005


Scientists verify critical fabrication properties of gadolinium-nickel alloy



A new alloy developed and patented by researchers at Lehigh University, Sandia National Laboratory and Idaho National Laboratory could help the U.S. dispose more safely of 50,000 tons of spent nuclear energy fuel that are now stored at 125 sites in 39 states.
John DuPont, professor of materials science and engineering at Lehigh and principal investigator on the project, said that a nickel-based alloy with added gadolinium showed far greater ability than any other alloy to absorb the deadly radioactive neutrons emitted by nuclear waste.

The researchers found that the gadolinium-nickel alloy passed an important test - it can be fabricated in large quantities using conventional ingot metallurgy and fusion welding techniques.



The researchers’ discovery, which was announced in an article in the December 2004 issue of the American Welding Society’s Welding Journal, caps a four-year study funded by the U.S. Department of Energy’s (DOE) Spent Nuclear Fuel Program.

The article, titled "Physical and Welding Metallurgy of Gadolinium-enriched Austenitic Alloys for Spent Nuclear Fuel Applications - Part II," won the society’s Warren F. Savage Award for advancing the understanding of welding metallurgy.

The article comes amidst a controversy over plans by the Bush Administration and Congress to transport the nation’s spent nuclear fuel to Nevada and deposit it inside Yucca Mountain about 90 miles northwest of Las Vegas.

In 2002, over the objections of Nevada Governor Kenny Guinn, Congress passed, and President Bush signed into law a resolution approving Yucca Mountain as the storage site for the nation’s spent nuclear fuel.

DOE’s application for a license to build the project is pending before the federal Nuclear Regulatory Commission. The state of Nevada, contending that the Yucca Mountain project is environmentally and geologically unsafe, has filed lawsuits against DOE, NRC, Bush and former DOE Secretary Spencer Abraham.

Gadolinium, a silvery-white metal. occurs naturally in several different minerals. The collaborative research conducted by Lehigh and the two national labs demonstrated that gadolinium can be added to specific nickel alloys and retain its malleability and ductility, as well as its ability to be heat-treated, shaped and fabricated readily into a desired shape.

More importantly, says DuPont, gadolinium has a neutron-absorption cross- section of 48,800 barn units, more than 60 times greater than the 765-barn cross-section for boron. (Cross-section, the measure of the probability of an interaction between a particle and a target nucleus, is expressed in barn units, with one barn equal to 10-24 cm2.) Borated stainless steel is the material commonly used in conventional nuclear-waste containers. However, borated stainless steel is not capable of housing some of the nations highly radioactive spent fuel.

The higher neutron-absorption capacity of gadolinium, says DuPont, means that highly radioactive fuel can now be safely transported to and stored at a permanent facility.

The research group, which includes DuPont at Lehigh and scientists from Sandia National Laboratories in New Mexico and the Idaho National Laboratory (formerly the Idaho National Engineering and Environmental Laboratory), conducted laboratory tests to determine the optimum amount of gadolinium to add to the nickel-based alloy.

The tests involved mixing the constituent elements of the alloy, heating and melting the mixture, and allowing it to cool and solidify. The alloy was then heated and rolled into half-inch-thick sheets, and subjected to strength and ductility tests.

"We designed and developed various alloys to determine the quantity of gadolinium that could be added while still maintaining the desired properties," says DuPont. "We needed to be able to heat-treat the final material, weld it and fabricate it."

A specification has been approved for the alloy by ASTM (the American Society of Testing Materials), which sets technical standards for materials, products, systems and services. The alloy is being reviewed by the American Society of Mechanical Engineers, which also sets standards for the use of new products. Neutronics (neutron-absorption) tests on the alloy were performed at Lawrence Livermore National Laboratory in California.

The research team was awarded a U.S. patent for the alloy last year.

Prior to its work with the gadolinium-nickel alloy, the researchers spent a year investigating gadolinium-enriched stainless-steel alloys for spent nuclear fuel storage applications before coming up against major obstacles to the production of those alloys using conventional hot working techniques.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>