Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart clothes can improve occupational safety

24.03.2005


”Smart clothes” are clothes that employ new technologies: technological developments have made it possible to integrate electronic components into conventional garments. In demanding conditions, such as working in heavy industries, very specific demands are placed on work apparel and materials, as they must protect the wearer from any hazards found in the working environment. Smart clothes design offers new material technology applications to make work apparel safer and more specifically suited to the work and environment in question. Smart clothes also make it possible for the wearer’s vital functions to be monitored, using, for example, an electromyograph (EMG).



The goal of the Academy-funded Models for Intelligent Garment Design (MeMoGa) research project is to develop methods and models for the research and design of smart clothes as well as to study matters related to their usability and social acceptability. The MeMoGa project approaches new, multidisciplinary research fields through the research of clothing design, fibre material technologies and physiology.

The material applications used in new types of work apparel include impact-protective materials, which can be divided into two categories: phase change materials (PCMs) and auxetic materials. "One example of phase change materials might be d3o, which is made of ”smart molecules”. Phase change materials move normally with the body, but when impacted, they protect the wearer by instantly hardening and then returning to their normal state once the impact load is released," explains researcher Mailis Mäkinen. Auxetic materials, on the other hand, are energy-absorbing materials, whose cross-section expands when stretched. "Auxetic materials include metals, ceramic or polymer materials or composites. These materials withstand pressure better than standard materials," says Mäkinen.


Many challenges facing the adoption of new materials

There are many challenges facing the use of new materials. The use of innovative new materials and integration of electronic and other types of components into garments requires, for example, the development of new types of testing methods and standards.

Furthermore, the development of materials, such as their mechanical properties, temporal durability or functionality in various conditions, may take a long time.

Garment-integrated electronics or other types of components in particular present problems in the washing or maintenance of the garment. In many cases the high cost of new materials discourages their adoption.

User needs and desires play a key role in the development of smart clothes

The needs and desires of work apparel users are surveyed before beginning the design of smart clothes, in order to ensure that the design will meet the user’s needs as effectively as possible. Before the design phase, it is important to identify the user as someone who is generally open to the use of technology and understand in what way a new technology, such as electronic components, change the user’s perceptions of the garment. This helps to predict how the technology should appear in the garment, i.e. how invisible or visible it can be.

A crucial part of ensuring the user-orientation of smart clothes is a usability assessment. A virtual prototype was developed for this purpose in order to allow end users evaluate a still non-existent smart garment before actually building the actual, physical prototype. "A virtual prototype involves such material as 3D models and 3D animations, which are used to present a realistic iteration of the prototype to the user instead of just showing them conceptual drawings. Animation makes it possible to show how the prototype will be used in a working environment, which demonstrates the smart garment’s possible uses in a heavy industry environment," explains researcher Riikka Matala. The goal of assessment is to make the user a part of the design process and possibly reduce the need for producing expensive (at this stage of development) and time-consuming physical prototypes.

Intelligent garments are being studied as part of the Academy’s PROACT Research Programme

The University of Lapland Department of Textile and Clothing Design, Tampere University of Technology Institute of Fibre Material Science, and University of Kuopio Department of Physiology are participants in the MeMoGa research project. The project is part of the Academy of Finland’s Proactive Computing (PROACT) Research Programme.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>