Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart clothes can improve occupational safety

24.03.2005


”Smart clothes” are clothes that employ new technologies: technological developments have made it possible to integrate electronic components into conventional garments. In demanding conditions, such as working in heavy industries, very specific demands are placed on work apparel and materials, as they must protect the wearer from any hazards found in the working environment. Smart clothes design offers new material technology applications to make work apparel safer and more specifically suited to the work and environment in question. Smart clothes also make it possible for the wearer’s vital functions to be monitored, using, for example, an electromyograph (EMG).



The goal of the Academy-funded Models for Intelligent Garment Design (MeMoGa) research project is to develop methods and models for the research and design of smart clothes as well as to study matters related to their usability and social acceptability. The MeMoGa project approaches new, multidisciplinary research fields through the research of clothing design, fibre material technologies and physiology.

The material applications used in new types of work apparel include impact-protective materials, which can be divided into two categories: phase change materials (PCMs) and auxetic materials. "One example of phase change materials might be d3o, which is made of ”smart molecules”. Phase change materials move normally with the body, but when impacted, they protect the wearer by instantly hardening and then returning to their normal state once the impact load is released," explains researcher Mailis Mäkinen. Auxetic materials, on the other hand, are energy-absorbing materials, whose cross-section expands when stretched. "Auxetic materials include metals, ceramic or polymer materials or composites. These materials withstand pressure better than standard materials," says Mäkinen.


Many challenges facing the adoption of new materials

There are many challenges facing the use of new materials. The use of innovative new materials and integration of electronic and other types of components into garments requires, for example, the development of new types of testing methods and standards.

Furthermore, the development of materials, such as their mechanical properties, temporal durability or functionality in various conditions, may take a long time.

Garment-integrated electronics or other types of components in particular present problems in the washing or maintenance of the garment. In many cases the high cost of new materials discourages their adoption.

User needs and desires play a key role in the development of smart clothes

The needs and desires of work apparel users are surveyed before beginning the design of smart clothes, in order to ensure that the design will meet the user’s needs as effectively as possible. Before the design phase, it is important to identify the user as someone who is generally open to the use of technology and understand in what way a new technology, such as electronic components, change the user’s perceptions of the garment. This helps to predict how the technology should appear in the garment, i.e. how invisible or visible it can be.

A crucial part of ensuring the user-orientation of smart clothes is a usability assessment. A virtual prototype was developed for this purpose in order to allow end users evaluate a still non-existent smart garment before actually building the actual, physical prototype. "A virtual prototype involves such material as 3D models and 3D animations, which are used to present a realistic iteration of the prototype to the user instead of just showing them conceptual drawings. Animation makes it possible to show how the prototype will be used in a working environment, which demonstrates the smart garment’s possible uses in a heavy industry environment," explains researcher Riikka Matala. The goal of assessment is to make the user a part of the design process and possibly reduce the need for producing expensive (at this stage of development) and time-consuming physical prototypes.

Intelligent garments are being studied as part of the Academy’s PROACT Research Programme

The University of Lapland Department of Textile and Clothing Design, Tampere University of Technology Institute of Fibre Material Science, and University of Kuopio Department of Physiology are participants in the MeMoGa research project. The project is part of the Academy of Finland’s Proactive Computing (PROACT) Research Programme.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>