Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pursue blast-resistant steel using new tomograph

22.03.2005


Materials scientists and engineers at Northwestern University are developing a new "high-security" steel that would be resistant to bomb blasts such as the one that struck -- and nearly sank -- the USS Cole in Yemen in 2000. The researchers now have a state-of-the-art instrument that enables them to get a precise look at steel’s composition on the nanoscale: a $2 million atom-probe tomograph that is only the fourth of its kind in the world.



Using the new Local-Electrode Atom-Probe (LEAP®) tomograph, researchers studying steel and other materials can -- at amazing speed -- pluck atoms off a material’s surface one at a time, layer by layer over tens of thousands of layers, to better understand the entire nanostructure and chemical composition of the material, which is key to designing new materials effectively and efficiently.

The technology is similar to that used in CT (computed tomography) scans, which image body tissues for medical diagnosis. Consisting of a field-ion microscope plus a special time-of-flight mass spectrometer, an atom-probe tomograph takes multiple pictures and uses those slices to construct a detailed three-dimensional image of the material.


"We now can conduct certain experiments that would be impossible without the LEAP tomograph," said David N. Seidman, Walter P. Murphy Professor of Materials Science and Engineering, who spearheaded the effort to bring a LEAP tomograph to Northwestern, the first university in the country to secure one. The three other institutions that have a LEAP tomograph are Oak Ridge National Laboratory, the University of Sydney and Sandia National Laboratories.

With a grant from the U.S. Office of Naval Research, Seidman is working with Morris E. Fine, professor emeritus of materials science and engineering, on the stronger steel problem. "The U.S. Navy wants a superior material for its new fleet of ships," said Seidman. "Our steel, an alloy of iron, carbon and various other elements and metals, gets its strength mainly from tiny nanosized particles of copper, which are distributed in both homogenous and heterogeneous patterns. The LEAP tomograph lets us, for the first time, view both distributions at once, which is critical to understanding the role copper plays. With in-depth knowledge of steel’s structure and chemical identity, we can design a stronger material."

The LEAP tomograph has a very large field of view, analyzes significantly larger volumes of material, and collects data more than 720 times faster than its predecessor at Northwestern, a conventional 3D Atom-Probe tomograph. The LEAP tomograph collects 72 million atoms per hour while the old tomograph collects merely 100,000 atoms in the same amount of time. The specimen is held in the tomograph at cryogenic temperatures, immobilizing the nanostructure so that when atoms are removed the remaining structure is not affected. Each atom’s position and chemical identity are recorded, and the data are then used to create a three-dimensional image of the material’s complex atomic structure.

Researchers using the new tomograph are not focusing on steel only. The LEAP tomograph, which became operational in January and is housed in the Northwestern University Center for Atom-Probe Tomography (NUCAPT) in William A. and Gayle Cook Hall, has attracted faculty, post-doctoral fellows and graduate students working on problems ranging from semiconductor nanowires for use in new nanotechnologies to stronger and energy efficient aluminum alloys for use at high temperatures, with applications in the airline and automotive industries. Other materials that can be studied using the LEAP tomograph are metal alloys containing ceramic particles, semiconductors and conducting polymers.

"The LEAP tomograph is a beautifully engineered and revolutionary piece of instrumentation," said Seidman, who heads NUCAPT, the second largest atom-probe tomography group in the world. "It’s like going from a rotating anode X-ray tube in your lab to the synchrotron at Argonne National Laboratory. Now the rate limiting step is analyzing the data as opposed to collecting the data."

To assist Seidman and other researchers in this challenge, a post-doctoral fellow from Argonne will be involved in developing additional software to handle the large data sets. One focus will be image visualization and the display of data in a way that reveals the most useful information.

The U.S. Office of Naval Research and the National Science Foundation provided the majority of the funding for the LEAP tomograph.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>